1
INTRODUCTION TO COMPUTER PROGRAMMING

PROGRAM

The set of instruction that directs a computer to solve a problem is called program
PROGRAMMING

Such activity that is used to solve a problem or to develop a program is called programming.

PROGRAMMER

A person who develop a program is called programmer

LANGUAGE

The source of communication is called language
COMPUTE PROGRAMMING LANGUGE

It is used to communicate instruction and commands to a computer is called computer programming language for example Pascal, Basic, C language
Programming language allows the programmers and end user to develop the program that are execute by the computer OR
The languages we can use to communicate with the computer are known as computer programming language.
TYPES OF LANGUAGE
Generally there two major types
· Low Level Language

· High Level Language

1. LOW LEVEL LANGUAGE

Low level language is machine oriented language. The set of commands available in low level language is a complex and not easy to understandable. Low level language can easily be converted into machine language
Example: Assembly language
2. HIGH LEVEL LANGUAGE

High level languages are those languages which are human understandable because keywords are used in English language. The set of command available in high level languages is a very simple and easy to understandable

Example: BASIC, PASCAL, VISUAL BASIC,C- LANGUAGE.
WHAT IS C - LANGUAGE?
C is a high level language. C language was introduced by Dennis Ritchie in 1972 at American Telephone and Telegraph bell laboratories of USA. In 1978 Brian Kernighan and Denis Ritchie published a book (The C Programming Language), in 1989 a new version (The Standard C) was introduced by ANSI (American National Standard Institute). C languages is best for learner programmers, C language is initially build for Unix operating system but now a days it is portable for all operating systems.
C is a general-purpose, block structured, procedural, imperative computer programming language It has since spread to many other platforms. Although C was designed as a system implementation language, it is also widely used for applications. C has also greatly influenced many other popular languages, especially [[C++]], which was originally designed as an extension to C. C’s a predecessor was a language called B)

C is a unique among programming language that provides the convenience of high level language such as Basic or Pascal. C language is also well-structured language. Its syntax makes it easy to write a program that is modular and therefore easy to understand and maintain. C language is portable. It is a reliable, simple and easy to use.
IDE=INTEGRATED DEVELOPMENT ENVORNMENT
 Turbo C provides an IDE (Integrated Development Environment) which combines all the features needed to develop a “C” program the feature include editor, linker and debugger and help system in to a single screen, also there are menu driven options and as well as all the options are the executable with the key combination and execute a program at command line. IDE is also called programming platforms
TRANSLATOR OR CONVERTER

A language translator is a type of system software that change or convert a high level language into machine level langue is called Translator There are three types of translator

· Compiler

· Interpreter

· Assembler

COMPILER
Compiler is a language translator used to translate whole program at a time and convert into machine language if any error is occur the compiler show the error with line number but after translation. Compiler converts source code into object code.
Example: C, COBOL, Pascal etc

INTERPRETER

Interpreter is a language translator which read our program statement by statement or line by line or step by step and translates it into machine language at a time and if any error occurs then stop reading and show error with line number
 Example BASIC, JAVA, Visual Basic
ASSEMBELER

Assembler is a language translator which translator assembly language program into machine language assembler can translate source program into object program.
Example Assembly language
KEYWORD/RESERVED WORD
Those word which are provided by the language is called keyword

We can not change the spelling of keyword. And must be following the syntax of keyword. Keywords are the word whose meaning has already been explained to the C compiler. The keyword is also called Reserved Word.

FUNCTION
Function is an independent program which performs a specific task is called function. We can send the values to function called Argument and function can be return one value.

MAIN FUNCTION ()

Main function is a biltan function which was provided by the C language and Main () function is predefined to C- compiler program will start with main (). Without main () function program will not be accept by the C language.
VARIABLE
A variable is a space in the computer’s memory set aside for certain kind of data and given name for easy reference. The variable which is used to identify the data and temporary store data in memory and hold the data and use by the user and we can change value of variable. That identifier which changes their values is called variable. The first character in the variable name must be an alphabet and no commas or blanks are allowed with in variable name. a variable is declared with given name and data types.
HEADER FILE
 All C command which is function that is predefines in a file that is called Header file. In header file special function are present such as printf() and scanf()function are predefine in <stdio.h.> header file In the C and C++ programming languages, standard library functions are traditionally declared in header files In computer programming, particularly in the C and C++ programming languages, a header file or include file is a file, usually in the form of source code, that is automatically included in another source file by the compiler. Typically, header files are included via compiler directives at the beginning (or head) of the other source file.

TYPES OF HEADER FILE

· Stdio.h =(
Contain standard input /output function

· Conio.h=(
Contain console input/output function

· Stdlib.h=(
Contain standard library function

· String.h=(
Contain string function

· Graphics.h=(Contain graphics function

· Dos.h =(Contain Dos utility function

· Math .h=(Contain mathematic function
C PREPROCESSOR
The C preprocessor (cpp) is the preprocessor for the C programming language. In many C implementations, it is a separate program invoked by the compiler as the first part of translation. The preprocessor handles directives for source file inclusion (#include), macro definitions (#define), and conditional inclusion (#if). The language of preprocessor directives is not strictly specific to the grammar of C, so the C preprocessor can also be used independently to process other types of files

ESCAPE SEQUENCE

Escape sequence is known as keyword which is used to display special type of characters. All escape sequence codes are start with the “\” backslash sign and the backslash sign “\” considered “an escape character” it causes an escape from the normal interpretation of a string so that the next character is recognized as having a special meaning that is why the code are called escape sequence.
Escape sequence are special notation through which we can display our data variety of ways.
Some escape sequence and their function is defined below.

	S.NO
	Escape Sequence
	Description

	1.
	\n
New line
	Takes the cursor to the beginning of next line

	2.
	\t Tab
	Tab moves over to the next eight space wide field

	3.
	\b Backspace
	Backspace moves the cursor one space left

	4.
	\r Carriage Return
	Takes the cursor to the beginning of the line

	5.
	\f Form feed
	Advance to the top of the next page on the printer

	6.
	\a Bell (Beep)
	Used to alert by the sound

	7.
	\’ Single quotation mark
	Used to print single quote

	8.
	\” Double quotation mark
	Used to print Double quote

	9.
	\\ Backslash
	Used to print backslash sign

	10.
	\xdd ASCII Code
	Use ASCII code in hexadecimal notation

	11.
	\ddd ASCII Code
	Use ASCII code in octal notation

Here is an example and program of the escape sequence used with printf() function.

Program

#include <stdio.h>

#include <conio.h>

void main (void)

{

clrscr();

Printf(“My Name is \n\t\t\” Muhammad Tahir Bozdar\” ”);

getch();

}

The output of above statement will be like this

My Name is

“Muhammad Tahir Bozdar”

FORMAT SPECIFIER
A Format specifier such as (%d or %c) is used to control what format will be used by printf () to print out a particular variable. It is used to define the parameters that which kind of data you want to perform, in general format specifier will be used with printf () to printout particular variable. The formate specifier tells the printf () where to put a value in string and what format to use in printing the values for example %d tells the printf () to print the integar %c tells the printf () to print the character %s tells the printf () to print the string and %f tells the printf () to print the floating point numbers
The format specifier in printf() determine the interpretation of variable types.

	S.NO
	FORMAT SPECIFIER
	DESCRIPTION

	1.
	%c
	Single character(used to print character value

	2.
	%s
	String (used to print string value

	3.
	%d
	Signed decimal integer (used to print integer value

	4.
	%f
	Floating point (Decimal notation)

	5.
	%e
	Floating point exponential notation

	6.
	%g
	Floating point (%f or %e which ever is shorter)

	7.
	%u
	Unsigned decimal integer

	8.
	%x
	Unsigned hexadecimal integer

	9.
	%o
	Unsigned octal integer

	10.
	l
	Prefix used with %d, %u, %x, %o to specify long integer (for example %ld)

DATA TYPE

 C language provides two biltan method data type

1. Non- numeric data type

2. Numeric data type

NON-NUMERIC DATA TYPE

In non- numeric data type only one data type is include called character data type.
CHARACTER (char)

Character (char) data type occupies one (1) byte of memory. It stores number in the range from (-128 to 127). The keyword to use character data type in turbo-c is as “char” character data type have no digit type of precision.
NUMERIC DATA TYPE

 In numeric data type following data types are include

INTEGER (int)

The integer data type occupies two (2) bytes of memory. It stores number in the range from (-32,768 to 32,767) with no precision of digit. The keyword to use integer data type in turbo-c is as “int”
LONG INTEGER (long)

The long integer data type occupies four (4) bytes of memory. It stores number in the range from (-2,147,483,648 to 2,147,483,647) with no precision of digit. The keyword to use integer data type in turbo-c is as “long”
FLOATING POINT (float)

The floating point data type occupies four (4) bytes of memory. It stores number in the range from (3.4 x 10-38 to 3.4 x 1038) with precision of (7) seven digits. The keyword to use floating point data type in turbo-c is as “float”. The float data type reserve four (4) bytes of memory in which one (1) byte of memory reserve for exponent number and (3) bytes of memory reserve for the value of the number.
DOUBLE PRECISION FLOATING POINT (double)

The double precision floating point data type occupies eight (8) bytes of memory. It stores number in the range from (1.7 x 10-308 to 1.7 x 10308) with precision of (15) fifteen digits. The keyword to use double precision floating point data type in turbo-c is as “double”.
LONG DOUBLE PRECISION FLOATING POINT (long double)

The long double precision floating point data type occupies ten (10) bytes of memory. It stores number in the range from (3.4 x 10-4932 to 1.1 x 104932) with precision of (19) nineteen digits. The keyword to use long double precision floating point data type in turbo-c is as “long double”.
SIGNED DATA TYPE

	KEYWORD
	BYTES OF MEMORY

	NUMERICAL RANGE

	DIGIT OF PRECISION

	
	
	LOW
	HIGH
	

	char
	1
	-128
	127
	0

	int
	2
	-32,768
	32,767
	0

	long
	4
	-2,147,483,648
	2,147,483,647
	0

	float
	4
	3.4 x 10-38
	3.4 x 1038
	7

	double
	8
	1.7 x 10-308
	1.7 x 10308
	15

	long double
	10
	3.4 x 10-4932
	1.1 x 104932
	19

UNSIGNED DATA TYPE

	KEYWORD
	BYTES OF MEMORY

	NUMERICAL RANGE

	FORMAT

SPECIFIER

	
	
	LOW
	HIGH
	

	Unsigned char
	1
	0
	256
	%c

	Unsigned int
	2
	0
	65535
	%u

	Unsigned long
	4
	0
	4,29,4967295
	%lu

INPUT FUNCTION/ OUTPUT FUNCTION
· printf() function
The printf () function is actually a powerful and versatile output function. It is used to displays the output on stdout (screen). The printf () function is important because it is work horse output statement in C. The printf () uses a unique format for printing constants and it is also used to print the value contained in a variable on the screen.
General form of printf () statement
Prototype(printf (“<format specifier>”, <list of variable>);

 printf (“format specifier\Escape Sequence”, variables);
Example

Printf(“%d\n”,a);

· scanf() function

The scanf() function is actually a powerful and versatile input function. scanf() function is used to take input form stdin(keyboard). The scanf() function can handle different kind of variable and control their formatting scanf() function will introduce “&” address operator
General form of scanf () statement
Prototype(scanf (“format specifier”, variables);
Example

scanf(“%d”, &a);
In the above example statement scanf() is input function “%d” is format specifier for integer variable and ‘a’ is variable name. Here ‘&’ is an address operator tell the scanf () t
· getch() function

The getch() function is used to get a character from stdin(keyboard).it does not echoes the character on the screen. It is frequently used when we want to wait for a key to be pressed it return value can be store in variable. This function is normally used for a wait until a key is pressed form the keyboard.
General form of getch () statement
Prototype(char getch(void);
Example
void main (void)

{

printf(“Shah Abdul latif UniversityKhairpur”);

getch();

}
· getche() function

The getche() function is used to get a character from stdin(keyboard).it does echoes the character on the screen. It is frequently used when we want to wait for a key to be pressed it return value of getche () can be store in variable.

General form of getche () statement
Prototype(char getche(void);
Example
void main (void)

{

printf(“Shah Abdul latif UniversityKhairpur”);

getche();

}

OPERATOR
Operators are words or symbol that causes a program to do some thing to variable for instance the arithmetic operator + and − causes a program to add or subtract two numbers

There are many operator used in C language but here we define some of them

1. Arithmetic operator

2. Increment and Decrement operator

3. Relational operators

4. Logical operator

5. Assignment operator

6. Bitwise operator

7. Address and indirection operator
· ARITHMETIC OPERATOR
	SYMBOL
	OPERATOR
	EXAMPLE

	+
	Addition
	
A+B

	─
	Subtraction
	A─B

	*
	Multiplication
	A*B

	∕
	Division
	A ∕ B

	%
	Remainder
	A %B

· INCREMENT AND DECREMENT OPERATOR

	SYMBOL
	OPERATOR
	EXAMPLE

	++
	Increment
	A++ OR ++A

	
─
 ─
	
Decrement
	A─ ─ OR ─ ─A

· RELATIONAL OPERATOR

	SYMBOL
	OPERATOR
	EXAMPLE

	>
	Less than
	
A>B

	<
	Greater than
	A<B

	<=
	Less than or equal
	A<=B

	>=
	Geater than or equal
	A >=B

	= =
	Equal
	A== B

	!=
	Not Equal
	A!=B

· LOGICAL OPERATOR

	
SYMBOL
	OPERATOR
	EXAMPLE

	&&
	AND
	A<B&&C>D

	¦ ¦|
	OR
	A<B¦ ¦C>D

	!
	NOT
	!(A<B)

· ASSIGNMENT OPERATOR

	SYMBOL
	OPERATOR
	EXAMPLE

	=
	Equal
	A=B

	+ =
	Addition
	
A+=B (a=a+b)

	─ =
	Subtraction
	A─ =B (a=a─ b)

	* =
	Multiplication
	A* =B (a=a*b)

	∕ =
	Division
	A ∕= B (a=a ∕ b)

	%
	Remainder
	A %=B (a=a %b)

	& =
	Bit wise And
	(A&=B)

	¦ =
	Bit wise Inclusive OR
	A¦=B

	^=
	Bit wise Exclusive OR
	A ^=B

	!=
	Not Equal
	
A!=B

	<<=
	Left Shift
	A<<=B

	>>=
	Right Shift
	A>>=B

· BITWISE OPERATOR

	SYMBOL
	OPERATOR
	EXAMPLE

	&
	And
	(A&B)

	¦
	Bit wise Inclusive OR
	A¦B

	^
	Bit wise Exclusive OR
	A ^B

	~
	Complement
	
~A

	<<
	Left Shift
	A<<2

	>>
	Right Shift
	A>>3

· ADDRESS AND INDIRECTION OPERATOR
	SYMBOL
	OPERATOR
	EXAMPLE

	&
	Address
	Addr=&var

	*
	Indirection
	Value=* addr

CONTROL STRUCTER

To control the flow of program is called control structure

Types of control structure
1. Sequential flow

2. Iteration flow

3. Selection flow

SEQUENTIAL FLOW

All those programs in which all the steps are taking place sequentially means one after one and there is no use of iterative or selection flow is called sequential flow

Example

#include<stdio.h>

#include<conio.h>

void main (void)
{

clrscrc()

printf(“SHAH ABDUL\n”);

printf(“LATIF UNIVERSITYn”);

printf(“KHAIRPUR\n”);

getch();

}

Output

SHAH ABDUL

LATIF UNIVERSITY

KHAIRPUR

ITERATION FLOW
Those program in which loops or repetition of certain tasks are taking place are known as iteration flow

LOOP
Repetition of one or more statement again and again is called loop
Categories of iterative control structure

1. for loop
(Definite loop)

2. while loop
(Indefinite loop)

3. Do – while loop (Indefinite loop)

FOR LOOP (Definite loop)

The for statement controls the loop it consists of the keyword for followed by parenthesis that contain three expression separated by semicolon these expression are called initialization expression, test expression, increment expression..

 A for statement divide into three expressions

For (initialization; test; increment)
For (j=o;
 j<=10;
 j++)

[image: image1]

[image: image2]
for loop is valid only for integers, and it is execute a section of code a fixed number of time, the for statement is not followed by a semicolon, if body loop consist more than one statement then we use open and closing braces. We can introduce more than one expression by separating them with “ , comma” in initialize and increment expression.

For loop program

	PROGRAM#1

	PROGRAM#2

	PROGRAM#3

	Display 1 to 10 number

Natural number
	Display Even number

	

	#include<stdio.h>

#include<conio.h>

void main (void)

{

int a;
clrscr();

for(a=0;a<=10;a++)

{

printf(“\n\t%d”,a);

}

getch();

}

output of program

1

2

3

4

5

6

7

8

9

10

	#include<stdio.h>

#include<conio.h>

void main (void)

{

int a,c;
clrscr();

for(a=1;a<=10;a++)

{

c=a*2;

printf(“\n\t%d”,c);

}

getch();

}

output of program

2

4

6

8

10
12

14

16

18

20

	#include<stdio.h>

#include<conio.h>

void main (void)

{

int a,c;
clrscr();

for(a=1;a<=10;a++)

{

c=a*2-1;

printf(“\n\t%d”,c);

}

getch();

}

output of program

1

3

5

7

9

11

13

15

17

19

 WHILE LOOP (Indefinite loop)

The second kind of loop structure available in c language is the while loop. Although a first glance the structure seems to be simpler than the for loop it actually uses the same element but they are distributed through out the program. It consists of the keyword while.

· While loop is valid only for character integer

· The main advantages of while loop is unexpected condition
· If the initial value is not correct as compare to testing then body of the loop will not execute.

[image: image3]

[image: image4]
void main (void)

{

int a;

a=1;

clrscr();

while(a<=10)

{

printf(“\n \t %d”,a);

a++;

}

getch();

}

DO WHILE LOOP (Indefinite loop)

This loop is very similar to while loop the only difference in the do loop is that the testing condition is evaluated after the body of loop is executed but in while loop testing condition is evaluated before the body of loop. It consists of the keyword do & while.

The do while loop is useful when the body of a loop will execute at least once a time

[image: image5]

[image: image6]
PROGRAM

void main (void)

{

int a;

a=0;

clrscr();

do

{

printf(“\n \t %d”,a);

a++;

}

while(a<=10)

getch();

}
SEQUENTIAL FLOW /CONDITIONAL LOGIC

Selection logic employs a number of conditions which leads to a selection of on out of the several alternatives module. The structure which implement this logic is called conditional structure of if structure

THERE ARE TWO BASIC TYPE OF CONDITION LOGIC
· IF - ELSE

· SWITCH – CASE

IF- ELSE

1. SINGLE ALTERNATIVES ==((if)

2. DOUBLE ALTERNATIVES ==((if-else)

3. MULTI ALTERNATIVES ==((if-elseif – else)

SINGLE ALTERNATIVES ==((if-then Statement)
The if condition will check the given condition and if it is true, it will execute the statements within the first set of braces (from '{' to the next '}'). If the condition is not true, braces statements will skipped and control transfer to next step of program

SYNTAX
If (CONDITION)

 {
STATEMENT 1
}

#Include<stdio.h>

#include<conio.h>

void main (void)
[image: image7]
{
[image: image8]
Char c;
clrscr();

c=getche();

if(c= =’s’)

{

printf(“\n \t SHAH LATIF ”);

}

printf(“\n \t IBA SUKKUR”);

getch();

}

DOUBLE ALTERNATIVES ==((if-then-else Statement)
In if – else statement condition will check. If the given condition if it is true, it will execute the if statements within the first set of braces (from '{' to the next '}').otherwise If the given condition if it is false, it will execute the Else condition’s statement.
if (condition)

{

 statement(s) executed if condition is true

}

else

{

 statement(s) executed if condition is false

}

#Include<stdio.h>

#include<conio.h>

void main (void)
[image: image9]
{
[image: image10]
Char c;

clrscr();

c=getche();

if(c= =’s’)

{

printf(“\t \t SHAH LATIF ”);

}
else

{
printf(“\t \t IBA SUKKUR”);
}
getch();

}

MUlTIPLE ALTERNATIVES ((if-then-elseif-else Statement)
In if – elseif and else statement condition will check. If the first given condition if it is true, it will execute the if statements within the first set of braces (from '{' to the next '}').otherwise If the first given condition if it is false, it will check the Else-if condition’s statement. If it is true then it will execute the Else if statements. If Else-if condition’s statement is false then it will execute the Else statements
(if-then-elseif-else Statement)
if (condition 1)

{

 statement(s) executed if condition 1 is true

}

elseif (condition 2)

{

 statement(s) executed if condition 1 is false and condition 2 is true

}

else

{

 statement(s) executed if condition 1 is false and condition 2 is false
}

#Include<stdio.h>

#include<conio.h>

void main (void)
[image: image11]
{
[image: image12]
Int x=7;
clrscr();

if(x>5)

{

printf(“\t \t The no. is greater than five ”);

}

elseif (x<5)
{
printf(“\t \t The no. is less than five ”);

}

else
{

printf(“\t \t The no. equal to five ”);

}

getch();

}

SWITCH – CASE
The switch statement is similar to the else-if construct but has the more flexibility and a clearer format. The keyword switch is followed by a switch variable in parenthesis switch (op) and The Break keyword causes the entire switch statement to exit
switch (VARIABLE) {
case CONDITION : STATEMENT
break
case CONDITION : STATEMENT
break
case CONDITION : STATEMENT
break
default : STATEMENT
}

PROGRAM

#include<stdio.h>

#include<conio.h>

void main (void)

{

int a,b;
char op;

clrscr();

printf(“ Enter First Value\t\t”);

scanf(“%d”,&a);

printf(“ \n Enter Second Value\t\t”);

scanf(“%d”,&b);

printf(“ \nEnter Any operator\t\t”);

scanf(“%c”,&op);

switch(op)
{

Case ‘+’ : printf(“%d”, a+b);break;

Case ‘−’ : printf(“%d”, a─b);break;

Case ‘*’ : printf(“%d”, a*b);break;

Case ‘/’ : printf(“%d”, a/b); break;

Default: printf(“\n Unknown operator”);

}

getch();
 }

FUNCTION
Function is an independent program which performs a specific task is called function.

We can send the values to function called argument; function can be returned one value.

Function is the building blocks of the C-Language. All C programs are a collection of function together with selected definition and global variable declaration. The selection of function scope of variables and organization of function into files makeup a good part of c program design “The use of function affects a programs efficiency, readability and maintainability because the function is so important to creating a C program

· The reason to use function is a reduce program size.

· The most important reason to use function is to aid in the conceptual organization of a program probably and original

· Another most important reason to use function is to avoiding the unnecessary repetition of cod.

STRUCTURE OF FUNCTION
There are three program elements involved in using a function.

1. Function definition
2. Call the function

3. Function Declaration

FUNCTION DEFINITION

The function itself is referred to as the function definition OR The function definition contains the actual code for the function. The function starts with a petro that include the function name among other name void petro (void). This petro is the declarator. The first void means that petro () does not return any thing and the second void main that it takes no argument Note that the declarator does not end with a semicolon. It is not a program statement whose execution causes. Some thing to happen rather, it tells the compiler that a function is being defined

CALLING THE FUNCTION

Calling a function like this is a C statement, so it ends with a semicolon petro ();
This function call cause control to be transferred to the code in the definition of petro (); and the return to main() to the statement immediately.

FUNCTION PROTOTYPE (DECLARATION)

All the variables were defined by name and data type before they were used. A function is declared in a similar way at the beginning of a program before it is called. The function declaration tells the compiler the name of the function; the data type the function return (if any) and the number and data type of the function’s argument (if any)

void petro (void); =====(function declaration.

The declaration tells the compiler that at some later point we plan to present a function called petro. The keyword void specifies that the function has no return value and second (void) in parenthesis indicate it takes no argument Notice that function declaration is terminated with a semicolon. It is complete statement in itself function declaration are also called prototype. Notice that the prototype is written before the main () function.

POSSIBILITY OF FUNCTION

· void petro (void).

· int petro (void).

· void petro (int).

· int petro (int).

[image: image13.png]

Statement # 1

Statement # 2

Statement # 3

Start

Stop

Increment/Decrement

Body of loop

Test

Intialize

FALSE

TRUE

Start

Stop

Increment/Decrement

Body of loop

Test

Intialize

FALSE

TRUE

Start

Stop

Body of loop

TRUE

Test

Increment/Decrement

FALSE

TRUE

Body of if statement

Test

Start

Stop

FALSE

Start

FALSE

Test

TRUE

Body of if

statement

Stop

Body of Else

statement

Stop

Body if statement

Test

3

Body elseif statement

Test

2

Body Else statement

Test

1

Start

TRUE

TRUE

TRUE

FALSE

E

FALSE

E

FALSE

E

Stop

Stop

Stop

Start

Test

1

Body 1

Test

2

Test

3

Break;

Test

4

Body 2

Body 3

Body 4

Break;

Stop

Break;

Break;

