The IDC Engineers

Pocket Guide

First Edition - Volume 5
Formulas and Conversions

Published by IDC Technologies,
982 Wellington Street
WEST PERTH WA 6005
WESTERN AUSTRALIA
Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
IDC Technologies
A.B.N. 003263189

ISBN 1875955097
US English. First Edition.
All rights to this publication are reserved. No part of this publication may be copied, reproduced, transmitted or stored in any form or by any means (including electronic, mechanical, photocopying, recording or otherwise) without prior written permission from IDC Technologies Pty Ltd.

Trademarks

All terms noted in this publication that are believed to be registered trademarks or trademarks are listed below:

- PC-DOS, IBM, IBM PC/XT, IBM PC/AT and IBM PS/2 are registered trademarks of International Business Machines Corporation.
- Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
- Intel is a registered trademark of the Intel Corporation

Disclaimer

Whilst all reasonable care has been taken to ensure that the description, opinions, listings and diagrams are accurate and workable, IDC Technologies does not accept any legal responsibility or liability to any person, organization or other entity for any direct loss, consequential loss or damage, however caused, that may be suffered as a result of the use of this publication.
If you want further information or advice please contact our Engineering Division at tech@idc-online.com for further support. We would be delighted to assist you.

A Message from IDC Technologies Technical Director,
 Steve Mackay

Dear Colleague,
Welcome to our latest engineering pocket guide focusing on engineering formulae and conversions.

We have been providing practical training for over 12 years throughout the USA, Canada, United Kingdom, Ireland, Australia, Singapore, South Africa and New Zealand. Although we are one of the largest providers of this sort of training and have trained a remarkable 120,000 engineers and technicians in the past few years alone, we are not content with resting on our laurels and continue to achieve an amazing 99.8% satisfaction rating in which delegates indicated the course was "good", "very good" or "excellent". We want the course that you attend to be an outstanding, motivating experience where you walk away and say - "that was truly a great course with a brilliant instructor and we will derive enormous benefit from it".

Our workshops are not academic but are rather designed to immediately provide you with the practical skills which will contribute to your productivity and your company's success. Our courses are vendor independent, free of bias and targeted solely at improving your productivity.

We have a remarkable group of instructors whom we believe are among the best in the industry. Of greatest benefit is that they have real and relevant practical experience in both industry and training.

Our policy is to continually re-examine and develop new training programs, update and improve them. Our aim is to anticipate the shifting and often complex technological changes facing everyone in engineering and business and to provide courses of the absolutely highest standards - helping you to improve your productivity.

We put tremendous efforts into our documentation with award winning manuals which are well researched, practical and down to earth in support of the course; so much so that many delegates have remarked that the manual itself justifies the course fees.

I would urge you to consider our courses and call us if you have any queries about them. We would be glad to explain in more detail what the courses entail and can even arrange for our instructors to give you a call to talk through the course contents with you and how it will benefit yourselves.

Finally, thank you for being such tremendously supportive clients.
We are blessed with having such brilliant people attending our courses who are enthusiastic about improving themselves and benefiting their companies with new insights and methods of improving their productivity. Your continual feedback is invaluable in making our courses even more appropriate for today's fast moving technology challenges.

We want to be your career partner for life - to ensure that your work is both satisfying and productive and we will do whatever it takes to achieve this.

Yours sincerely

Steve Mackay

(C P Eng, BSEE, B.Sc(Hons), MBA)
Technical Director
P.S. Don't forget our no-risk guarantee on all our products - we give you a 100% guarantee of satisfaction or your money back.

Other books in this series

Volume 1 - INSTRUMENTATION
Automation using PLCs, SCADA and Telemetry, Process Control and Data Acquisition

Volume 2 - COMMUNICATIONS
Data Communications, Industrial Networking, TCP/IP and Fiber Optics
Volume 3 - ELECTRICAL
Power Quality, Power Systems Protection and Substation Automation
Volume 4 - ELECTRONICS
Personal Computers, Digital Signal Processing and Analog/Digital Conversions

Table of Contents

Chapter 1
Definition and Abbreviations for Physical Quantities 1
Chapter 2
Units of Physical Quantities 3
Chapter 3
System of Units 23
Chapter 4
General Mathematical Formulae 27
4.1 Algebra 27
4.2 Geometry. 29
4.3 Trigonometry 39
4.4 Logarithm 40
4.5 Exponents 42
4.6 Complex Numbers 42
Chapter 5
Engineering Concepts and Formulae 44
5.1 Electricity 44
5.2 Applied Mechanics 57
5.2.1 Newton's laws of motion57
5.2.2 Linear Velocity And Acceleration 60
5.2.3 Force.
.62
.62
5.2.4 Centripetal (Centrifugal) Force
5.2.4 Centripetal (Centrifugal) Force 64
5.3 Thermodynamics 64
5.3.1 Laws of Thermodynamics 64
.64
5.3.2 Momentum65
5.3.3 Impulse 65
5.3.4 Elastic and Inelastic collision 65
5.3.5 Center of Mass 65
5.3.7 Conditions of Equilibrium 65
5.3.8 Gravity
.66
5.3.9 Vibrations \& Waves
5.3.10 Standing Waves. 66
5.3.11 Beats. 67
5.3.12 67
5.3.14 Elastic Deformatio
5.3.14 Elastic Deformatio 68 68
5.3.15 Temperature Scale 68
5.3.16 Sensible Heat Equation 68
5.3.17 Latent Heat 68
5.3.18 Gas Laws
69
5.3.19 Specific Heats Of Gases. 70
5.3.21 Heat Transfer by Conduction 71
5.3.22 Thermal Expansion of Solids .72
5.4 Fluid Mechanics 77
5.4.1 Discharge from an Orifice77
5.4.2 Bernoulli's Theory 78
Chapter 6
References 80
6.1 Periodic Table of Elements 80
6.2 Resistor Color Coding 81

Formulas and Conversions

Chapter 1

Definition and Abbreviations for Physical Quantities

Symbol	Unit	Quantity
m	meter	Length
kg	kilogram	Mass
s	second	Time
A	ampere	Electric current
K	kelvin	Thermodynamic temp
cd	candela	Luminous intensity

Quantity	Unit	Symbol	Equivalent
Plane angle	radian	rad	-
Force	newton	N	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
Work, energy	heat	joule	$\mathrm{J} \cdot \mathrm{N} \cdot \mathrm{m}$
Power	watt	W	J / s
Frequency	hertz	Hz	s^{-1}
Viscosity: kinematic	-	$\mathrm{m}^{2} / \mathrm{s}$	10 c st (Centistoke)
Viscosity: Dynamic	-	$\mathrm{Ns} / \mathrm{m}^{2}$	$10^{3} \mathrm{cP}$ (Centipoise)
Pressure	-	Pa or $\mathrm{N} / \mathrm{m}^{2}$	pascal, Pa

Symbol	Prefix	Factor by which unit is multiplied
T	Tera	10^{12}
G	Giga	10^{9}
M	Mega	10^{6}

Formulas and Conversions

Symbol	Prefix	Factor by which unit is multiplied
k	Kilo	10^{3}
h	Hecto	10^{2}
da	Deca	10
d	Deci	10^{-1}
c	Centi	10^{-2}
m	Milli	10^{-3}
m	Micro	10^{-6}
n	Nano	10^{-9}
p	Pico	10^{-12}

Quantity	Electrical unit	Symbol	Derived unit
Potential	Volt	V	W/A
Resistance	Ohm	I	V/A
Charge	Coulomb	C	$\mathrm{A} \cdot \mathrm{s}$
Capacitance	Farad	F	$\mathrm{A} \cdot \mathrm{s} / \mathrm{V}$
Electric field strength	-	V / m	-
Electric flux density	-	$\mathrm{C} / \mathrm{m}^{2}$	-

Quantity	Magnetic unit	Symbol	Derived unit
Magnetic flux	Weber	Wb	V•s $=\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$
Inductance	Henry	H	V•s/A $=\mathrm{N} \cdot \mathrm{m} / \mathrm{A}^{2}$
Magnetic field strength	-	A/m	-
Magnetic flux density	Tesla	T	Wb/m $2=$ (N) $/(\mathrm{Am})$

Formulas and Conversions

Chapter 2

Units of Physical Quantities

Conversion Factors (general)
1 acre $=43,560$ square feet
1 cubic foot $=7.5$ gallons
1 foot $=0.305$ meters
1 gallon $=3.79$ liters
1 gallon $=8.34$ pounds
1 grain per gallon $=17.1$ mg/L
1 horsepower $=0.746$ kilowatts
1 million gallons per day $=694$ gallons per minute
1 pound $=0.454$ kilograms
1 pound per square inch $=2.31$ feet of water
Degrees Celsius $=$ (Degrees Fahrenheit -32$)(5 / 9)$
Degrees Fahrenheit $=($ Degrees Celsius) (9/5) +32
$1 \%=10,000$ mg/L

Name	To convert from	To	Multiply by	Divide by
Acceleration	$\mathrm{ft} / \mathrm{sec}^{2}$	$\mathrm{~m} / \mathrm{s}^{2}$	0.3048	3.2810
Area	acre	m^{2}	4047	$2.471 \mathrm{E}-04$
Area	ft^{2}	$\mathrm{~m}^{2}$	$9.294 \mathrm{E}-02$	10.7600
Area	hectare	m^{2}	$1.000 \mathrm{E}+04$	$1.000 \mathrm{E}-04$
Area	in^{2}	$\mathrm{~m}^{2}$	$6.452 \mathrm{E}-04$	1550
Density	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{~kg} / \mathrm{m}^{3}$	1000	$1.000 \mathrm{E}-03$
Density	$\mathrm{lbm} / \mathrm{ft}^{3}$	$\mathrm{~kg} / \mathrm{m}^{3}$	16.02	$6.243 \mathrm{E}-02$
Density	$\mathrm{lbm} / \mathrm{in}^{3}$	$\mathrm{~kg} / \mathrm{m}^{3}$	$2.767 \mathrm{E}+04$	$3.614 \mathrm{E}-05$

Formulas and Conversions

Name	To convert from	To	Multiply by	Divide by
Mass flow rate	lbm/sec	kg/s	0.4535	2.2050
Moment of inertia	$\mathrm{ft} \cdot \mathrm{lb} \cdot \mathrm{s}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	1.3557	0.7376
Moment of inertia	$\mathrm{in} \cdot \mathrm{lb} \cdot \mathrm{s}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.1130	8.8510
Moment of inertia	$\mathrm{oz} \cdot \mathrm{in} \cdot \mathrm{s}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$	7.062E-03	141.60
Power	BTU/hr	W	0.2931	3.4120
Power	hp	W	745.71	1.341E-03
Power	tons of refrigeration	W	3516	$2.844 \mathrm{E}-04$
Pressure	bar	Pa	$1.000 \mathrm{E}+05$	1.000E-05
Pressure	dyne/ cm^{2}	Pa	0.1000	10.0000
Pressure	in. mercury	Pa	3377	$2.961 \mathrm{E}-04$
Pressure	in. water	Pa	248.82	4.019E-03
Pressure	kgf/ cm^{2}	Pa	$9.807 \mathrm{E}+04$	$1.020 \mathrm{E}-05$
Pressure	$\mathrm{lbf} / \mathrm{ft}^{2}$	Pa	47.89	$2.088 \mathrm{E}-02$
Pressure	$\mathrm{lbf} / \mathrm{in}^{2}$	Pa	6897	$1.450 \mathrm{E}-04$
Pressure	mbar	Pa	100.00	$1.000 \mathrm{E}-02$
Pressure	microns mercury	Pa	0.1333	7.501
Pressure	mm mercury	Pa	133.3	7.501E-03
Pressure	std atm	Pa	$1.013 \mathrm{E}+05$	9.869E-06
Specific heat	BTU/lbm $\cdot^{\circ} \mathrm{F}$	J/kg ${ }^{\circ} \mathrm{C}$	4186	$2.389 \mathrm{E}-04$
Specific heat	cal/g ${ }^{\circ} \mathrm{C}$	J/kg ${ }^{\circ} \mathrm{C}$	4186	2.389E-04
Temperature	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	0.5556	1.8000
Thermal conductivity	$\mathrm{BTU} / \mathrm{hr} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	1.7307	0.5778
Thermal conductivity	BTU $\cdot \mathrm{in} / \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	0.1442	6.9340
Thermal conductivity	$\mathrm{cal} / \mathrm{cm} \cdot \mathrm{s} \cdot{ }^{\circ} \mathrm{C}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	418.60	$2.389 \mathrm{E}-03$
Thermal conductivity	$\mathrm{cal} / \mathrm{ft} \cdot \mathrm{hr} \cdot{ }^{\circ} \mathrm{F}$	$\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$	$6.867 \mathrm{E}-03$	145.62
Time	day	S	$8.640 \mathrm{E}+04$	$1.157 \mathrm{E}-05$

Formulas and Conversions

Name	To convert from	To	Multiply by	Divide by
Time	sidereal year	S	$3.156 \mathrm{E}+07$	3.169E-08
Torque	$\mathrm{ft} \cdot \mathrm{lbf}$	$\mathrm{N} \cdot \mathrm{m}$	1.3557	0.7376
Torque	in $\cdot \mathrm{lbf}$	$N \cdot \mathrm{~m}$	0.1130	8.8504
Torque	In.ozf	$\mathrm{N} \cdot \mathrm{m}$	7.062E-03	141.61
Velocity	$\mathrm{ft} / \mathrm{min}$	m / s	5.079E-03	196.90
Velocity	ft / s	m / s	0.3048	3.2810
Velocity	$\mathrm{Km} / \mathrm{hr}$	m / s	0.2778	3.6000
Velocity	miles/hr	m / s	0.4470	2.2370
Viscosity - absolute	centipose	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	$1.000 \mathrm{E}-03$	1000
Viscosity - absolute	$\mathrm{g} / \mathrm{cm} \cdot \mathrm{s}$	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	0.1000	10
Viscosity - absolute	$\mathrm{lbf} / \mathrm{ft}^{2} \cdot \mathrm{~s}$	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	47.87	$2.089 \mathrm{E}-02$
Viscosity - absolute	$\mathrm{lbm} / \mathrm{ft} \cdot \mathrm{s}$	$\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}$	1.4881	0.6720
Viscosity - kinematic	centistoke	$\mathrm{m}^{2} / \mathrm{s}$	$1.000 \mathrm{E}-06$	$1.000 \mathrm{E}+06$
Viscosity - kinematic	$\mathrm{ft}^{2} / \mathrm{sec}$	$\mathrm{m}^{2} / \mathrm{s}$	$9.294 \mathrm{E}-02$	10.7600
Volume	ft^{3}	m^{3}	$2.831 \mathrm{E}-02$	35.3200
Volume	in^{3}	m^{3}	$1.639 \mathrm{E}-05$	$6.102 \mathrm{E}+04$
Volume	Liters	m^{3}	$1.000 \mathrm{E}-03$	1000
Volume	U.S. gallons	m^{3}	$3.785 \mathrm{E}-03$	264.20
Volume flow rate	$\mathrm{ft}^{3} / \mathrm{min}$	$\mathrm{m}^{3} / \mathrm{s}$	$4.719 \mathrm{E}-04$	2119
Volume flow rate	U.S. gallons/min	$\mathrm{m}^{3} / \mathrm{s}$	$6.309 \mathrm{E}-05$	$1.585 \mathrm{E}+04$

A. DISTANCE (Length)

Conversions

Multiply		By
LENGTH		
To obtain		
Centimeter	0.03280840	foot
Centimeter	0.3937008	inch

Formulas and Conversions

Multiply	By	To obtain
Fathom	1.8288^{*}	meter(m)
Foot	0.3048^{*}	meter(m)
Foot	30.48^{*}	centimeter(cm)
Foot	304.8^{*}	millimeter(mm)
Inch	0.0254^{*}	meter(m)
Inch	2.54^{*}	centimeter(cm)
Inch	25.4^{*}	millimeter(mm)
Kilometer	0.6213712	mile(USstatute)
Meter	39.37008	Inch
Meter	0.54680066	Fathom
Meter	3.280840	Foot
Meter	0.1988388	Rod
Meter	1.093613	Yard
Meter	0.0006213712	mile(USstatute)
Microinch	39.37008	Microinch
micrometer(micron)	$1,609.344^{*}$	meter(m)
mile(USstatute)	1.609344^{*}	kilometer(km)
mile(USstatute)	0.003280840	Foot
millimeter	0.0397008	Inch
millimeter	5.0292^{*}	meter(m)
Rod	0.9144^{*}	meter(m)
Yard	micrometer(micron)($\mu \mathrm{m})$	

To Convert	To	Multiply By
Cables	Fathoms	120
Cables	Meters	219.456
Cables	Yards	240

Formulas and Conversions

To Convert	To	Multiply By
Centimeters	Meters	0.01
Centimeters	Yards	0.01093613
Centimeters	Feet	0.0328084
Centimeters	Inches	0.3937008
Chains, (Surveyor's)	Rods	4
Chains, (Surveyor's)	Meters	20.1168
Chains, (Surveyor's)	Feet	66
Fathoms	Meters	1.8288
Fathoms	Feet	6
Feet	Statute Miles	0.00018939
Feet	Kilometers	0.0003048
Feet	Meters	0.3048
Feet	Yards	0.3333333
Feet	Inches	12
Feet	Centimeters	30.48
Furlongs	Statute Miles	0.125
Furlongs	Meters	201.168
Furlongs	Yards	220
Furlongs	Feet	660
Furlongs	Inches	7920
Hands (Height Of Horse)	Inches	4
Hands (Height Of Horse)	Centimeters	10.16
Inches	Meters	0.0254
Inches	Yards	0.02777778
Inches	Feet	0.08333333
Inches	Centimeters	2.54
Inches	Millimeters	25.4

Formulas and Conversions

To Convert	To	Multiply By
Kilometers	Statute Miles	0.621371192
Kilometers	Meters	1000
Leagues, Nautical	Nautical Miles	3
Leagues, Nautical	Kilometers	5.556
Leagues, Statute	Statute Miles	3
Leagues, Statute	Kilometers	4.828032
Links, (Surveyor's)	Chains	0.01
Links, (Surveyor's)	Inches	7.92
Links, (Surveyor's)	Centimeters	20.1168
Meters	Statute Miles	0.000621371
Meters	Kilometers	0.001
Meters	Yards	1.093613298
Meters	Feet	3.280839895
Meters	Inches	39.370079
Meters	Centimeters	100
Meters	Millimeters	1000
Microns	Meters	0.000001
Microns	Inches	0.0000394
Miles, Nautical	Statute Miles	1.1507794
Miles, Nautical	Kilometers	1.852
Miles, Statute	Kilometers	1.609344
Miles, Statute	Furlongs	8
Miles, Statute	Rods	320
Miles, Statute	Meters	1609.344
Miles, Statute	Yards	1760
Miles, Statute	Feet	5280
Miles, Statute	Inches	63360

Formulas and Conversions

To Convert	To	Multiply By
Miles, Statute	Centimeters	160934.4
Millimeters	Inches	0.039370079
Mils	Inches	0.001
Mils	Millimeters	0.0254
Paces (US)	Inches	30
Paces (US)	Centimeters	76.2
Points (Typographical)	Inches	0.013837
Points (Typographical)	Millimeters	0.3514598
Rods	Meters	5.0292
Rods	Yards	5.5
Rods	Feet	16.5
Spans	Inches	9
Spans	Miles	22.86
Yards	Meters	0.00056818
Yards	Feet	3
Yards	Inches	36
Yards	Centimeters	91.44
Yards		

Conversion	
Length	$1 \mathrm{yd}=3 \mathrm{ft}$
$1 \mathrm{ft}=12 \mathrm{in}$	$1 \mathrm{in}=2.5400 \mathrm{~cm}$
$1 \mathrm{~cm}=0.3937 \mathrm{in}$	$1 \mathrm{ft}=0.3048 \mathrm{~m}$
$1 \mathrm{~m}=3.281 \mathrm{ft}$	$1 \mathrm{yd}=0.9144 \mathrm{~m}$
$1 \mathrm{~m}=1.0936 \mathrm{yd}$	1 mile $=1.6093 \mathrm{~km}$
$1 \mathrm{~km}=0.6214$ mile	1 fathom $=6 \mathrm{ft}$
1 furlong $=40$ rods	

Formulas and Conversions

Conversion	
1 statute mile $=8$ furlongs	$1 \mathrm{rod}=5.5 \mathrm{yd}$
1 statute mile $=5280 \mathrm{ft}$	$1 \mathrm{in}=100 \mathrm{mils}$
1 nautical mile $=6076 \mathrm{ft}$	1 light year $=9.461 \times 10^{15} \mathrm{~m}$
1 league $=3$ miles	$1 \mathrm{mil}=2.540 \times 10^{-5} \mathrm{~m}$
Area	
$1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}$	1 acre $=160 \operatorname{rod}^{2}$
$1 \mathrm{yd}^{2}=9 \mathrm{ft}^{2}$	1 acre $=43,560 \mathrm{ft}^{2}$
$1 \mathrm{rod}^{2}=30.25 \mathrm{yd}^{2}$	$1 \mathrm{mile}^{2}=640$ acres
$1 \mathrm{~cm}^{2}=0.1550 \mathrm{in}^{2}$	$1 \mathrm{in}^{2}=6.4516 \mathrm{~cm}^{2}$
$1 \mathrm{~m}^{2}=10.764 \mathrm{ft}^{2}$	$1 \mathrm{ft}^{2}=0.0929 \mathrm{~m}^{2}$
$1 \mathrm{~km}^{2}=0.3861 \mathrm{mile}^{2}$	$1 \mathrm{mile}^{2}=2.590 \mathrm{~km}^{2}$
Volume	
$1 \mathrm{~cm}^{3}=0.06102 \mathrm{in}^{3}$	$1 \mathrm{in}^{3}=16.387 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=35.31 \mathrm{ft}^{3}$	$1 \mathrm{ft}^{3}=0.02832 \mathrm{~m}^{3}$
1 Litre $=61.024 \mathrm{in}^{3}$	$1 \mathrm{in}^{3}=0.0164$ litre
1 Litre $=0.0353 \mathrm{ft}^{3}$	$1 \mathrm{ft}^{3}=28.32$ litres
1 Litre $=0.2642$ gal. (U.S.)	$1 \mathrm{yd}^{3}=0.7646 \mathrm{~m}^{3}$
1 Litre $=0.0284$ bu (U.S.)	1 gallon (US) $=3.785$ litres
1 Litre $=1000.000 \mathrm{~cm}^{3}$	1 gallon (US) $=3.785 \times 10^{-3} \mathrm{~m}^{3}$
$\begin{aligned} & 1 \text { Litre }=1.0567 \text { qt. (liquid) or } \\ & 0.9081 \text { qt. (dry) } \end{aligned}$	1 bushel (US) = 35.24 litres
1 oz (US fluid) $=2.957 \times 10^{-5} \mathrm{~m}^{3}$	1 stere $=1 \mathrm{~m}^{3}$
Liquid Volume	
1 gill $=4$ fluid ounces	1 barrel $=31.5$ gallons
1 pint $=4$ gills	1 hogshead = 2 bbl (63 gal)
1 quart $=2$ pints	1 tun $=252$ gallons
1 gallon $=4$ quarts	1 barrel (petrolum) $=42$ gallons

Formulas and Conversions

Conversion	
Dry Volume	1 quart $=67.2 \mathrm{in}^{3}$
1 quart $=2$ pints	1 peck $=537.6 \mathrm{in}^{3}$
1 peck $=8$ quarts	1 bushel $=2150.5 \mathrm{in}^{3}$
1 bushel $=4$ pecks	

B. Area

Conversions

Multiply	By	To obtain
AREA		
acre	4,046.856	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$
acre	0.4046856	hectare
centimeter ${ }^{2}$	0.1550003	inch ${ }^{2}$
centimeter ${ }^{2}$	0.001076391	foot ${ }^{2}$
foot ${ }^{2}$	0.09290304^{*}	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$
foot ${ }^{2}$	929.0304^{2}	centimeter ${ }^{2}\left(\mathrm{~cm}^{2}\right)$
foot ${ }^{2}$	92,903.04	millimeter ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
hectare	2.471054	acre
inch 2	$645.16{ }^{*}$	millimeter ${ }^{2}\left(\mathrm{~mm}^{2}\right)$
inch 2	6.4516	centimeter ${ }^{2}\left(\mathrm{~cm}^{2}\right)$
inch 2	0.00064516	meter $^{2}\left(\mathrm{~m}^{2}\right)$
meter 2	1,550.003	inch 2
meter 2	10.763910	foot ${ }^{2}$
meter 2	1.195990	yard ${ }^{2}$
meter 2	0.0002471054	acre
millimeter 2	0.00001076391	foot ${ }^{2}$
millimeter 2	0.001550003	inch 2
yard ${ }^{2}$	0.8361274	meter $^{2}\left(\mathrm{~m}^{2}\right)$

Formulas and Conversions

C. Volume

Conversions
Metric Conversion Factors: Volume (including Capacity)

Multiply	By	To obtain
VOLUME (including CAPACITY)		
centimeter ${ }^{3}$	0.06102376	inch ${ }^{3}$
foot ${ }^{3}$	0.028311685	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
foot ${ }^{3}$	28.31685	liter
gallon (UK liquid)	0.004546092	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
gallon (UK liquid)	4.546092	litre
gallon (US liquid)	0.003785412	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
gallon (US liquid)	3.785412	liter
inch 3	16,387.06	millimeter ${ }^{3}\left(\mathrm{~mm}^{3}\right)$
inch 3	16.38706	centimeter ${ }^{3}\left(\mathrm{~cm}^{3}\right)$
inch 3	0.00001638706	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
Liter	$0.001 *$	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
Liter	0.2199692	gallon (UK liquid)
Liter	0.2641720	gallon (US liquid)
Liter	0.03531466	foot ${ }^{3}$
meter ${ }^{3}$	219.9692	gallon (UK liquid)
meter ${ }^{3}$	264.1720	gallon (US liquid)
meter 3	35.31466	foot ${ }^{3}$
meter ${ }^{3}$	1.307951	yard ${ }^{3}$
meter ${ }^{3}$	1000.*	liter
meter 3	61,023.76	inch 3
millimeter 3	0.00006102376	inch 3
Yard ${ }^{3}$	0.7645549	meter $^{3}\left(\mathrm{~m}^{3}\right)$

D. Mass and Weight

Conversions

Formulas and Conversions

To Convert	To	Multiply By
Carat	Milligrams	200
Drams, Avoirdupois	Avoirdupois Ounces	0.06255
Drams, Avoirdupois	Grams	1.7718452
Drams, Avoirdupois	Grains	27.344
Drams, Troy	Troy Ounces	0.125
Drams, Troy	Scruples	3
Drams, Troy	Grams	3.8879346
Drams, Troy	Grains	60
Grains	Kilograms	$6.47989 \mathrm{E}-05$
Grains	Avoirdupois Pounds	0.00014286
Grains	Troy Pounds	0.00017361
Grains	Troy Ounces	0.00208333
Grains	Avoirdupois Ounces	0.00228571
Grains	Troy Drams	0.0166
Grains	Avoirdupois Drams	0.03657143
Grains	Pennyweights	0.042
Grains	Scruples	0.05
Grains	Grams	0.06479891
Grains	Milligrams	64.79891
Grams	Kilograms	0.001
Grams	Avoirdupois Pounds	0.002204623
Grams	Troy Pounds	0.00267923
Grams	Troy Ounces	0.032150747
Grams	Avoirdupois Ounces	0.035273961
Grams	Avoirdupois Drams	0.56438339
Grams	Grains	15.432361

Formulas and Conversions

To Convert	To	Multiply By
Grams	Milligrams	1000
Hundredweights, Long	Long Tons	0.05
Hundredweights, Long	Metric Tons	0.050802345
Hundredweights, Long	Short Tons	0.056
Hundredweights, Long	Kilograms	50.802345
Hundredweights, Long	Avoirdupois Pounds	112
Hundredweights, Short	Long Tons	0.04464286
Hundredweights, Short	Metric Tons	0.045359237
Hundredweights, Short	Short Tons	0.05
Hundredweights, Short	Kilograms	45.359237
Hundredweights, Short	Avoirdupois Pounds	100
Kilograms	Long Tons	0.0009842
Kilograms	Metric Tons	0.001
Kilograms	Short Tons	0.00110231
Kilograms	Short Hundredweights	0.02204623
Kilograms	Avoirdupois Pounds	2.204622622
Kilograms	Troy Pounds	2.679229
Kilograms	Troy Ounces	32.15075
Kilograms	Avoirdupois Ounces	35.273962
Kilograms	Avoirdupois Drams	564.3834
Kilograms	Grams	1000
Kilograms	Grains	15432.36
Milligrams	Grains	0.015432358
Ounces, Avoirdupois	Kilograms	0.028349523
Ounces, Avoirdupois	Avoirdupois Pounds	0.0625
Ounces, Avoirdupois	Troy Pounds	0.07595486
Ounces, Avoirdupois	Troy Ounces	0.9114583

Formulas and Conversions

To Convert	To	Multiply By
Ounces, Avoirdupois	Avoirdupois Drams	16
Ounces, Avoirdupois	Grams	28.34952313
Ounces, Avoirdupois	Grains	437.5
Ounces, Troy	Avoirdupois Pounds	0.06857143
Ounces, Troy	Troy Pounds	0.0833333
Ounces, Troy	Avoirdupois Ounces	1.097143
Ounces, Troy	Troy Drams	8
Ounces, Troy	Avoirdupois Drams	17.55429
Ounces, Troy	Pennyweights	20
Ounces, Troy	Grams	31.1034768
Ounces, Troy	Grains	480
Pennyweights	Troy Ounces	0.05
Pennyweights	Grams	1.55517384
Pennyweights	Grains	24
Pounds, Avoirdupois	Long Tons	0.000446429
Pounds, Avoirdupois	Metric Tons	0.000453592
Pounds, Avoirdupois	Short Tons	0.0005
Pounds, Avoirdupois	Quintals	0.00453592
Pounds, Avoirdupois	Kilograms	0.45359237
Pounds, Avoirdupois	Troy Pounds	1.215278
Pounds, Avoirdupois	Troy Ounces	14.58333
Pounds, Avoirdupois	Avoirdupois Ounces	16
Pounds, Avoirdupois	Avoirdupois Drams	256
Pounds, Avoirdupois	Grams	453.59237
Pounds, Avoirdupois	Grains	7000
Pounds, Troy	Kilograms	0.373241722
Pounds, Troy	Avoirdupois Pounds	0.8228571

Formulas and Conversions

To Convert	To	Multiply By
Pounds, Troy	Troy Ounces	12
Pounds, Troy	Avoirdupois Ounces	13.16571
Pounds, Troy	Avoirdupois Drams	210.6514
Pounds, Troy	Pennyweights	240
Pounds, Troy	Grams	373.2417216
Pounds, Troy	Grains	5760
Quintals	Metric Tons	0.1
Quintals	Kilograms	100
Quintals	Avoirdupois Pounds	220.46226
Scruples	Troy Drams	0.333
Scruples	Grams	1.2959782
Scruples	Grains	20
Tons, Long (Deadweight)	Metric Tons	1.016046909
Tons, Long (Deadweight)	Short Tons	1.12
Tons, Long (Deadweight)	Long Hundredweights	20
Tons, Long (Deadweight)	Short Hundredweights	22.4
Tons, Long (Deadweight)	Kilograms	1016.04691
Tons, Long (Deadweight)	Avoirdupois Pounds	2240
Tons, Long (Deadweight)	Avoirdupois Ounces	35840
Tons, Metric	Long Tons	0.9842065
Tons, Metric	Short Tons	1.1023113
Tons, Metric	Quintals	10
Tons, Metric	Long Hundredweights	19.68413072
Tons, Metric	Short Hundredweights	22.04623
Tons, Metric	Kilograms	1000
Tons, Metric	Avoirdupois Pounds	2204.623
Tons, Metric	Troy Ounces	32150.75

Formulas and Conversions

To Convert	To	Multiply By
Tons, Short	Long Tons	0.8928571
Tons, Short	Metric Tons	0.90718474
Tons, Short	Long Hundredweights	17.85714
Tons, Short	Short Hundredweights	20
Tons, Short	Kilograms	907.18474
Tons, Short	Avoirdupois Pounds	2000

E. Density

Conversions

To Convert	To	Multiply By
Grains/imp. Gallon	Parts/million	14.286
Grains/US gallon	Parts/million	17.118
Grains/US gallon	Pounds/million gal	142.86
Grams/cu. Cm	Pounds/mil-foot	3.405 E -07
Grams/cu. Cm	Pounds/cu. in	0.03613
Grams/cu. Cm	Pounds/cu. ft	62.43
Grams/liter	Pounds/cu. ft	0.062427
Grams/liter	Pounds/1000 gal	8.345
Grams/liter	Grains/gal	58.417
Grams/liter	Parts/million	1000
Kilograms/cu meter	Pounds/mil-foot	$3.405 \mathrm{E}-10$
Kilograms/cu meter	Pounds/cu in	0.00003613
Kilograms/cu meter	Grams/cu cm	0.001
Kilograms/cu meter	Pound/cu ft	0.06243
Milligrams/liter	Parts/million	1
Pounds/cu ft	Pounds/mil-foot	$5.456 \mathrm{E}-09$
Pounds/cu ft	Pounds/cu in	0.0005787

Formulas and Conversions

To Convert	To	Multiply By
Pounds/cu ft	Grams/cu cm	0.01602
Pounds/cu ft	Kgs/cu meter	16.02
Pounds/cu in	Pounds/mil-foot	0.000009425
Pounds/cu in	Gms/cu cm	27.68
Pounds/cu in	Pounds/cu ft	1728
Pounds/cu in	Kgs/cu meter	27680

F. Relative Density (Specific Gravity) Of Various Substances

Substance	Relative Density
Water (fresh)	1.00
Mica	2.9
Water (sea average)	1.03
Nickel	8.6
Aluminum	2.56
Oil (linseed)	0.94
Antimony	6.70
Oil (olive)	9.92
Bismuth	$0.76-0.86$
Oil (petroleum)	8.40
Brass	0.87
Oil (turpentine)	2.1
Brick	0.86
Paraffin	1.58
Calcium	21.5
Platinum	3.4
Carbon (diamond)	

Formulas and Conversions

Substance	Relative Density
Sand (dry)	1.42
Carbon (graphite)	2.3
Silicon	2.6
Carbon (charcoal)	1.8
Silver	10.57
Chromium	6.5
Slate	2.1-2.8
Clay	1.9
Sodium	0.97
Coal	1.36-1.4
Steel (mild)	7.87
Cobalt	8.6
Sulphur	2.07
Copper	8.77
Tin	7.3
Cork	0.24
Tungsten	19.1
Glass (crown)	2.5
Wood (ash)	0.75
Glass (flint)	3.5
Wood (beech)	0.7-0.8
Gold	19.3
Wood (ebony)	1.1-1.2
I ron (cast)	7.21
Wood (elm)	0.66
Iron (wrought)	7.78

Formulas and Conversions

Substance	Relative Density
Wood (lignum-vitae)	1.3
Lead	11.4
Magnesium	1.74
Manganese	8.0
Mercury	13.6
Lead	11.4
Magnesium	1.74
Manganese	0.7
Wood (oak)	0.56
Wood (pine)	0.8
Wood (teak)	7.0
Zinc	$0.7-1.0$
Wood (oak)	0.56
Wood (pine)	7.8
Wood (teak)	13.6
Zinc	
Mercury	

G. Greek Alphabet

Name	Lower Case	Upper Case
Alpha	a	A
Beta	β	B
Gamma	Y	Γ
Delta	δ	Δ
Epsilon	ε	E
Zeta	ζ	Z

Formulas and Conversions

Chapter 3

System of Units

The two most commonly used systems of units are as follows:

- SI
- Imperial

SI: The International System of Units (abbreviated "SI") is a scientific method of expressing the magnitudes of physical quantities. This system was formerly called the meter-kilogramsecond (MKS) system.

Imperial: A unit of measure for capacity officially adopted in the British Imperial System British units are both dry and wet

Metric System

	Exponent value	Numerical equivalent	Representation	Example
Tera	10^{12}	1000000000000	T	Thz (Tera hertz)
Giga	10^{9}	1000000000	G	Ghz (Giga hertz)
Mega	10^{6}	1000000	M	Mhz (Mega hertz)
Unit quantity	1	1		hz (hertz) F (Farads)
Micro	10^{-6}	0.001	μ	$\mu \mathrm{F}$ (Micro farads)
Nano	10^{-9}	0.000001	n	nF (Nano farads)
Pico	10^{-12}	0.000000000001	p	pF (Pico farads)

Conversion Chart

Multiply	I nto Milli	I nto Centi	I nto Deci	Into MGL*	I nto Deca	I nto Hecto	Into Kilo
To Convert Kilo	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	1

Formulas and Conversions

Multiply by	I nto Milli	I nto Centi	Into Deci	I nto MGL*	I nto Deca	I nto Hecto	I nto Kilo
To convert Hecto	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	1	10^{-1}
To convert Deca	10^{4}	10^{3}	10^{2}	10^{1}	1	10^{-1}	10^{-2}
To convert MGL*	10^{3}	10^{2}	10^{1}	1	10^{-1}	10^{-2}	10^{-3}
To Tonvert Deci	10^{2}	10^{1}	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}
To Convert Centi	10^{1}	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}
To Tonvert Milli	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}

MGL = meter, gram, liter

Example:
To convert Kilogram Into Milligram $\rightarrow\left(1\right.$ Kilo X $\left.10^{6}\right)$ Milligrams
Physical constants

Name	Symbolic Representation	Numerical Equivalent
Avogadro's number	N	$6.023 \times 10^{26} /(\mathrm{kg} \mathrm{mol})$
Bohr magneton	B	$9.27 \times 10^{-24} \mathrm{Am} \mathrm{25}$
Boltzmann's constant	k	$1.380 \times 10^{-23} \mathrm{~J} / \mathrm{k}$
Stefan-Boltzmann constant	d	$5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
Characteristic impedance of free	Zo	$\left(\mu_{0} / \mathrm{E}_{0}\right)^{1 / 2}=120 \Pi \Omega$
space	eV	$1.602 \times 10^{-19} \mathrm{~J}$
Electron volt	e	$1.602 \times 10^{-19} \mathrm{C}$
Electron charge		

Formulas and Conversions

Name	Symbolic Representation	Numerical Equivalent
Electronic rest mass	$\mathrm{m}_{\text {e }}$	$9.109 \times 10^{-31} \mathrm{~kg}$
Electronic charge to mass ratio	$\mathrm{e} / \mathrm{m}_{\mathrm{e}}$	$1.759 \times 10^{11} \mathrm{C} / \mathrm{kg}$
Faraday constant	F	$9.65 \times 10^{7} \mathrm{C} /(\mathrm{kg} \mathrm{mol})$
Permeability of free space	μ_{0}	$4 \Pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
Permittivity of free space	E_{0}	$8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Proton mass	m_{p}	$1.672 \times 10^{-27} \mathrm{~kg}$
Proton to electron mass ratio	$\mathrm{m}_{\mathrm{p}} / \mathrm{m}_{\mathrm{e}}$	1835.6
Standard gravitational acceleration	g	$9.80665 \mathrm{~m} / \mathrm{s}^{2}, 9.80665 \mathrm{~N} / \mathrm{kg}$
Universal constant of gravitation	G	$6.67 \times 10-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Universal gas constant	Ro	$8.314 \mathrm{~kJ} /(\mathrm{kg} \mathrm{mol} \mathrm{K})$
Velocity of light in vacuum	C	$2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Temperature	${ }^{0} \mathrm{C}$	$5 / 9\left({ }^{0} \mathrm{~F}-32\right)$
Temperature	K	$\begin{gathered} 5 / 9\left({ }^{0} \mathrm{~F}+459.67\right), 5 / 9^{0} \mathrm{R},{ }^{0} \mathrm{C}+ \\ 273.15 \end{gathered}$
Speed of light in air	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Electron charge	e	$-1.60 \times 10^{-19} \mathrm{C}$
Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Electron volt	1 eV	$1.60 \times 10^{-19} \mathrm{~J}$
Mass of proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$

Formulas and Conversions

Name	Symbolic Representation	Numerical Equivalent
Acceleration due to gravity on Earth	g	$9.80 \mathrm{~m} \mathrm{~s}^{-2}$
Acceleration due to gravity on the Moon	$\mathrm{gm}_{\text {M }}$	$1.62 \mathrm{~m} \mathrm{~s}^{-2}$
Radius of the Earth	R_{E}	$6.37 \times 10^{6} \mathrm{~m}$
Mass of the Earth	M_{E}	$5.98 \times 10^{24} \mathrm{~kg}$
Radius of the Sun	R_{S}	$6.96 \times 10^{8} \mathrm{~m}$
Mass of the Sun	MS	$1.99 \times 10^{30} \mathrm{~kg}$
Radius of the Moon	R_{M}	$1.74 \times 10^{6} \mathrm{~m}$
Mass of the Moon	M_{M}	$7.35 \times 10^{22} \mathrm{~kg}$
Earth-Moon distance	-	$3.84 \times 10^{8} \mathrm{~m}$
Earth-Sun distance	-	$1.50 \times 10^{11} \mathrm{~m}$
Speed of light in air	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Electron charge	e	$-1.60 \times 10^{-19} \mathrm{C}$
Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Electron volt	1 eV	$1.60 \times 10^{-19} \mathrm{~J}$
Mass of proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Acceleration due to gravity on Earth	g	$9.80 \mathrm{~m} \mathrm{~s}^{-2}$
Acceleration due to gravity on the Moon	gm_{M}	$1.62 \mathrm{~m} \mathrm{~s}^{-2}$
Ton	1 ton	$1.00 \times 10^{3} \mathrm{~kg}$

Formulas and Conversions

Chapter 4

General Mathematical Formulae

4.1 Algebra

A. Expansion Formulae

Square of summation

- $(x+y)^{2}=x^{2}+2 x y+y^{2}$

Square of difference
$\bullet(x-y)^{2}=x^{2}-2 x y+y^{2}$
Difference of squares

- $\mathrm{x}^{2}-\mathrm{y}^{2}=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$

Cube of summation

$$
\cdot(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
$$

Summation of two cubes

$$
\text { - } x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)
$$

Cube of difference

- $(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$

Difference of two cubes

- $\mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})\left(\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}\right)$
B. Quadratic Equation
- If $a x^{2}+b x+c=0$,

Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The basic algebraic properties of real numbers a, b and c are

Property	Description
Closure	$a+b$ and $a b$ are real numbers
Commutative	$a+b=b+a, a b=b a$
Associative	$(a+b)+c=a+(b+c),(a b) c=a(b c)$
Distributive	$(a+b) c=a c+b c$

Formulas and Conversions

Identity	$a+0=0+a=a$
Inverse	$a+(-a)=0, a(1 / a)=1$
Cancellation	If $a+x=a+y$, then $x=y$
Zero-factor	$a 0=0 a=0$
Negation	$-(-a)=a,(-a) b=a(-b)=-(a b),(-a)(-b)=a b$

Algebraic Combinations
Factors with a common denominator can be expanded:
$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$
Fractions can be added by finding a common denominator:
$\frac{a}{c}+\frac{b}{d}=\frac{a d+b c}{c d}$
Products of fractions can be carried out directly:
$\frac{a}{c} \times \frac{b}{d}=\frac{a b}{c d}$

Quotients of fractions can be evaluated by inverting and multiplying:
$\frac{a / b}{c / d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$

Radical Combinations

$$
\begin{aligned}
& \sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b} \\
& \sqrt[n]{a}=a^{1 / n} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\
& \sqrt[n]{a^{m}}=a^{\frac{m}{n}} \\
& \sqrt[n]{m} \sqrt[m]{a}=\sqrt[m]{a}
\end{aligned}
$$

| | |
| :--- | :--- | :--- | :--- | :--- |

	$\frac{\text { 蕃 }}{}$		
	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{5} \\ & \hline \end{aligned}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$
		$\frac{\pi}{2}$	$\frac{\pi}{2}$
	近		
		$\begin{aligned} & \tilde{\sim} \\ & + \\ & \tilde{n} \\ & + \\ & \stackrel{n}{2} \end{aligned}$	
	¢		

$\begin{aligned} & \text { ò } \\ & \frac{\text { Bin }}{} \end{aligned}$		
$\stackrel{0}{5}$ $\stackrel{\text { Br }}{9}$ $>$	$\frac{\pi}{2}$	\％
	$\frac{\pi}{2}$	$\frac{\pi}{2}$
㳖	$\underbrace{\stackrel{\approx}{t} \mid}_{\frac{\pi}{ \pm}}$	$\begin{aligned} & \text { v } \\ & k \\ & 1 i \end{aligned}$
		$\begin{aligned} & \text { 怎品 } \\ & \text { "I } \end{aligned}$
$\begin{aligned} & \underset{ \pm}{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 믐 } \\ & \text { ì } \\ & \text { ion } \\ & \text { ion } \end{aligned}$	$\stackrel{\cup}{\square}$

$\begin{aligned} & 0 \\ & \frac{0}{5} \end{aligned}$		\square	
$$		¢ ¢ II $>$	
	$\begin{aligned} & \text { N } \\ & + \\ & \stackrel{y}{c} \\ & \underset{\sim}{+} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & + \\ & + \\ & E_{N}^{N} \\ & N_{N} \\ & \\|_{n} \end{aligned}$	
\%	z	$\underset{z}{2}$	
	$\frac{\pi}{2}$	$\frac{\pi}{2}$	
-			

Formulas and Conversions

4.3 Trigonometry

A. Pythagoras' Law

$$
c^{2}=a^{2}+b^{2}
$$

B. Basic Ratios

- $\operatorname{Sin} \theta=\mathrm{a} / \mathrm{c}$
- $\operatorname{Cos} \theta=\mathrm{b} / \mathrm{c}$
- Tan $\theta=a / b$
- $\operatorname{Cosec} \theta=\mathrm{c} / \mathrm{a}$
- $\operatorname{Sec} \theta=\mathrm{c} / \mathrm{b}$
- $\operatorname{Cot} \theta=\mathrm{b} / \mathrm{a}$

Degrees versus Radians

- A circle in degree contains 360 degrees
- A circle in radians contains 2π radians

Sine, Cosine and Tangent

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenus }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenus }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Sine, Cosine and the Pythagorean Triangle

$$
[\sin \theta]^{2}+[\cos \theta]^{2}=\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Formulas and Conversions

Tangent, Secant and Co-Secant

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \sec \theta=\frac{1}{\cos \theta} \\
& \csc \theta=\frac{1}{\sin \theta}
\end{aligned}
$$

C. Trigonometric Function Values

Euler's Representation
$e^{j \theta}=\cos (\theta)+j \sin (\theta)$
$e^{-j \theta}=\cos (\theta)-j \sin (\theta)$
$e^{j n \theta}=\cos (n \theta)+j \sin (n \theta)$
$\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}$
$\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}$

4.4 Logarithm

Definition

The logarithm of a number to a particular base is the power (or index) to which that base must be raised to obtain the number.

The number 8 written in index form as $\mathbf{8}=\mathbf{2}^{\mathbf{3}}$
The equation can be rewritten in logarithm form as $\log _{2} 8=\mathbf{3}$
Logarithm laws
The logarithm laws are obtained from the index laws and are:
$\bullet \log _{a} x+\log _{a} y=\log _{a} x y$

Formulas and Conversions

- $\log _{a} x-\log _{a} y=\log _{a}(x / y)$
- $\log _{a} x y=y \log _{a} x$
$-\log _{a}(1 / x)=-\log _{a} x$
- $\log _{a} 1=0$
- $\log _{a} a=1$
- $a^{\left(\log _{a} x\right)}=x$

Note: It is not possible to have the logarithm of a negative number. All logarithms must have the same base

Euler Relationship

The trigonometric functions are related to a complex exponential by the Euler
relationship:
$e^{j x}=\cos x+j \sin x$
$e^{-j x}=\cos x-j \sin x$
From these relationships the trig functions can be expressed in terms of the comple exponential:
$\cos x=\frac{e^{j x}+e^{-j x}}{2}$
$\sin x=\frac{e^{j x}-e^{-j x}}{2}$

Hyperbolic Functions

The hyperbolic functions can be defined in terms of exponentials.
Hyperbolic sine $=\sinh x=\frac{e^{x}-e^{-x}}{2}$
Hyperbolic cosine $=\cosh \mathrm{x}=\frac{e^{x}+e^{-x}}{2}$
Hyperbolic tangent $=\tanh \mathrm{x}=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{x}}$

4.5 Exponents

Summary of the Laws of Exponents

Let c, d, r, and s be any real numbers.

$c^{r} \cdot c^{s}=c^{r+s}$	$(c \cdot d)^{r}=c^{r} \cdot d^{r}$
$\frac{c^{r}}{c^{s}}=c^{r-s}, c \neq 0$	$\left(\frac{c}{d}\right)^{r}=\frac{c^{r}}{d^{r}}, d \neq 0$
$\left(c^{r}\right)^{s}=c^{r \cdot s}$	$c^{-r}=\frac{1}{c^{r}}$

Basic Combinations
Since the raising of a number n to a power p may be defined as multiplying n times itself p times, it follows that
$n^{p_{1}+p_{2}}=n^{p_{1}} n^{p_{2}}$
The rule for raising a power to a power can also be deduced
$\left(\mathrm{n}^{\mathrm{a}}\right)^{\mathrm{b}}=\mathrm{n}^{\mathrm{ab}}$
$(a b)^{n}=a^{n} b^{n}$
$a^{m} / a^{n}=a^{m-n}$
where a not equal to zero

4.6 Complex Numbers

A complex number is a number with a real and an imaginary part, usually expressed in Cartesian form
$\mathbf{a}+\mathbf{j b}$ where $\mathbf{j}=\sqrt{-1}$ and $\mathbf{j} \cdot \mathbf{j}=\mathbf{- 1}$
Complex numbers can also be expressed in polar form
$A e^{j \theta}$ where $A=\sqrt{ } \mathbf{a}^{2}+b^{2}$ and $\boldsymbol{\theta}=\tan ^{-1}(\mathbf{b} / \mathbf{a})$
The polar form can also be expressed in terms of trigonometric functions using the Euler relationship
$e^{j \theta}=\cos \theta+j \sin \theta$

Euler Relationship

The trigonometric functions are related to a complex exponential by the Euler relationship
$\mathbf{e}^{j x}=\cos x+j \sin x$

Formulas and Conversions

$\mathbf{e}^{-j \theta}=\cos x-j \sin x$

From these relationships the trigonometric functions can be expressed in terms of the complex exponential:
$\cos x=\frac{e^{j x}+e^{-j x}}{2}$
$\sin x=\frac{e^{j x}-e^{-j x}}{2}$
This relationship is useful for expressing complex numbers in polar form, as well as many other applications.

Polar Form, Complex Numbers
The standard form of a complex number is
$\mathbf{a}+\mathbf{j b}$ where $\mathbf{j}=\sqrt{ } \mathbf{- 1}$
But this can be shown to be equivalent to the form
$A \mathbf{e}^{\mathrm{j} \theta}$ where $\mathrm{A}=\sqrt{ } \mathbf{a}^{2}+\mathrm{b}^{2}$ and $\boldsymbol{\theta}=\boldsymbol{\operatorname { t a n }}^{-1}(\mathrm{~b} / \mathbf{a})$
which is called the polar form of a complex number. The equivalence can be shown by using the Euler relationship for complex exponentials.

$$
\begin{aligned}
& A e^{j \theta}=\sqrt{a^{2}+b^{2}}\left(\cos \left[\tan ^{-1} \frac{b}{a}\right]+j \sin \left[\tan ^{-1} \frac{b}{a}\right]\right) \\
& A e^{j \theta}=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+j \frac{b}{\sqrt{a^{2}+b^{2}}}\right)=a+j b
\end{aligned}
$$

Chapter 5

Engineering Concepts and Formulae

5.1 Electricity

Ohm's Law
$I=\frac{V}{R}$
Or
$V=I R$
Where
= current (amperes)
$E=$ electromotive force (volts)
$\mathrm{R}=$ resistance (ohms)
Temperature correction
$R_{t}=R o(1+a t)$
Where
Ro $=$ resistance at 0 으 (.)
$\mathrm{R}_{\mathrm{t}}=$ resistance at t 으 (.)
a = temperature coefficient which has an average value for copper of 0.004 $28\left(\Omega / \Omega{ }^{\circ} \mathrm{C}\right)$
$R_{2}=R_{1} \frac{\left(1+\alpha t_{2}\right)}{\left(1+\alpha t_{1}\right)}$
Where $R_{1}=$ resistance at t_{1}
$\mathrm{R}_{2}=$ resistance at t_{2}

Values of alpha	$\boldsymbol{\Omega} / \boldsymbol{\Omega} \mathbf{\circ} \mathbf{C}$
Copper	0.00428
Platinum	0.00358
Nickel	0.00672
Tungsten	0.00450

Formulas and Conversions

Aluminum

 0.0040Current, $I=\frac{n q v t A}{t}=n q v A$
Conductor Resistivity
$R=\frac{\rho L}{a}$
Where
$\rho=$ specific resistance (or resistivity) (ohm meters, Ωm)
$\mathrm{L}=$ length (meters)
$a=$ area of cross-section (square meters)

Quantity	Equation
Resistance R of a uniform conductor	$R=\rho \frac{L}{A}$
Resistors in series, R_{s}	$R_{s}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
Resistors in parallel, R_{p}	$\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
Power dissipated in resistor:	$P=V I=I^{2} R=\frac{V^{2}}{R}$
Potential drop across R	$\mathrm{V}=I \mathrm{R}$

Dynamo Formulae

Average e.m.f. generated in each conductor $=\frac{2 \varphi N p Z}{60 c}$

Where

$\mathrm{Z}=$ total number of armature conductors
$\mathrm{c}=$ number of parallel paths through winding between positive and negative brushes
Where $\mathrm{c}=2$ (wave winding), $\mathrm{c}=2 \mathrm{p}$ (lap winding)
$\Phi=$ useful flux per pole (webers), entering or leaving the armature
$p=$ number of pairs of poles
$\mathrm{N}=$ speed (revolutions per minute)
Generator Terminal volts $=$ EG - IaR
Motor Terminal volts $=$ EB + IaRa

Formulas and Conversions

Where EG = generated e.m.f.
EB = generated back e.m.f.
Ia = armature current
$\mathrm{Ra}=$ armature resistance

Alternating Current

RMS value of sine curve $=0.707$ of maximum value Mean Value of Sine wave $=0.637$ of maximum value Form factor $=$ RMS value $/$ Mean Value $=1.11$
Frequency of Alternator $=\frac{p N}{60}$ cycles per second
Where p is number of pairs of poles
N is the rotational speed in $\mathrm{r} / \mathrm{min}$

Slip of Induction Motor

[(Slip speed of the field - Speed of the rotor) / Speed of the Field] $\times 100$
Inductors and Inductive Reactance

Physical Quantity	Equation
Inductors and Inductance	$\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
Inductors in Series:	$\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\ldots$.
Inductor in Parallel:	$\frac{1}{\mathrm{~L}_{\mathrm{T}}}=\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}}+\frac{1}{\mathrm{~L}_{3}}+\ldots .$.
Current build up (switch initially closed after having been opened)	At $\mathrm{v}_{\mathrm{L}}(\mathrm{t})=\mathrm{Ee}^{-\frac{\mathrm{t}}{\tau}}$
$\mathrm{v}_{\mathrm{R}}(\mathrm{t})=\mathrm{E}\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{\tau}}\right)$	
	$\mathrm{i}(\mathrm{t})=\frac{\mathrm{E}}{\mathrm{R}}\left(1-\mathrm{e}^{-\frac{t}{\tau}}\right)$
	$\tau=\frac{\mathrm{L}}{\mathrm{R}}$

Formulas and Conversions

Physical Quantity	Equation
	$\tau^{\prime}=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{T}}}$
Alternating Current	$\begin{aligned} & \mathrm{f}=1 / \mathrm{T} \\ & \mathrm{~m}=2 \pi \mathrm{f} \end{aligned}$
Complex Numbers:	$\begin{aligned} & C=a+j b \\ & C=M \cos \theta+j M \sin \theta \\ & M=\sqrt{a^{2}+b^{2}} \\ & \theta=\tan ^{-1}\left(\frac{b}{a}\right) \end{aligned}$
Polar form:	$C=M \angle \theta$
Inductive Reactance	$\left\|\mathrm{X}_{\mathrm{L}}\right\|=\omega \mathrm{L}$
Capacitive Reactance	$\left\|X_{C}\right\|=1 /(\omega \mathrm{C})$
Resistance	R
Impedance	Resistance: $Z_{R}=\mathrm{R} \angle 0^{\circ}$ Inductance: $\mathrm{Z}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}=\omega \mathrm{L} \angle 90^{\circ}$ Capacitance: $Z_{C}=X_{C} \angle-90^{\circ}=1 /(\omega \mathrm{C})$ $\angle-90^{\circ}$

Quantity	Equation
Ohm's Law for AC	$V=1 Z$
Time Domain	$\begin{aligned} & v(t)=V_{m} \sin (\omega t \pm \phi) \\ & i(t)=I_{m} \sin (\omega t \pm \phi) \end{aligned}$
Phasor Notation	$\begin{aligned} & \mathrm{V}=\mathrm{V}_{\mathrm{rms}} \angle \phi \\ & \mathrm{~V}=\mathrm{V}_{\mathrm{m}} \angle \phi \end{aligned}$
Components in Series	$Z_{T}=Z_{1}+Z_{2}+Z_{3}+.$
Voltage Divider Rule	$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{T}} \frac{\mathrm{Z}_{\mathrm{x}}}{\mathrm{Z}_{\mathrm{T}}}$
Components in Parallel	$\frac{1}{\mathrm{Z}_{\mathrm{T}}}=\frac{1}{\mathrm{Z}_{1}}+\frac{1}{\mathrm{Z}_{2}}+\frac{1}{\mathrm{Z}_{3}}+\ldots$

Formulas and Conversions

Quantity	Equation
Current Divider Rule	$\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{T}} \frac{\mathrm{Z}_{\mathrm{T}}}{\mathrm{Z}_{\mathrm{x}}}$
Two impedance values in parallel	$\mathrm{Z}_{\mathrm{T}}=\frac{\mathrm{Z}_{1} Z_{2}}{\mathrm{Z}_{1}+Z_{2}}$

Capacitance

Capacitors	$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{~V}} \quad[\mathrm{~F}] \quad \text { (Farads) }$
Capacitor in Series	$\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots .$
Capacitors in Parallel	$\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots .$.
Charging a Capacitor	$\begin{aligned} & i(t)=\frac{E}{R} e^{-\frac{t}{R C}} \\ & v_{R}(t)=E e^{-\frac{t}{R C}} \\ & v_{C}(t)=E\left(1-e^{-\frac{t}{R C}}\right) \\ & \tau=R C \end{aligned}$
Discharging a Capacitor	$\begin{aligned} & \mathrm{i}(\mathrm{t})=-\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau^{\prime}}} \\ & \mathrm{V}_{\mathrm{R}}(\mathrm{t})=-\mathrm{V}_{\mathrm{o}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau^{\prime}}} \\ & \mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{\mathrm{o}} \mathrm{e}^{\frac{\mathrm{t}}{\tau^{\prime}}} \\ & \tau^{\prime}=\mathrm{R}_{\mathrm{T}} \mathrm{C} \end{aligned}$

Quantity	Equation
Capacitance	$C=\frac{Q}{V}$

Formulas and Conversions

Quantity	Equation
Capacitance of a Parallel-plate Capacitor	$\begin{aligned} & C=\frac{\varepsilon A}{d} \\ & E=\frac{V}{d} \end{aligned}$
Isolated Sphere	$C=4 п \varepsilon r$
Capacitors in parallel	$\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
Capacitors in series	$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
Energy stored in a charged capacitor	$W=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V$
If the capacitor is isolated	$W=\frac{Q^{2}}{2 C}$
If the capacitor is connected to a battery	$W=\frac{1}{2} C V^{2}$
For R C circuits Charging a capacitor	$\begin{aligned} & Q=Q_{0}\left(1-e^{-t / R C}\right) ; \\ & V=V_{0} \\ & \left(1-e^{-t / R C}\right) \end{aligned}$
Discharging a capacitor	$\begin{aligned} & Q=Q_{0} e^{-t / R C} \\ & V=V_{0} e^{-t / R C} \end{aligned}$

- If the capacitor is isolated, the presence of the dielectric decreases the potential difference between the plates
- If the capacitor is connected to a battery, the presence of the dielectric increases the charge stored in the capacitor
- The introduction of the dielectric increases the capacitance of the capacitor

Formulas and Conversions

Current in AC Circuit
RMS Current

In Cartesian form	$I=\frac{V}{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]} \cdot\left[R-j\left(\omega L-\frac{1}{\omega C}\right)\right]$
	Amperes
In polar form	$I=\frac{V}{\sqrt{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]}} \angle-\phi_{s}$ Amperes
	where $\phi_{s}=\tan ^{-1}\left[\frac{\omega L-\frac{1}{\omega C}}{R}\right]$
Modulus	$\|I\|=\frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$

Complex Impedance

In Cartesian form	$Z=R+j\left(\omega L-\frac{1}{\omega C}\right)$ Ohms
In polar form	$Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \angle \phi_{s}$ Ohms
Where $\phi_{s}=\tan ^{-1}\left[\frac{\omega L-\frac{1}{\omega C}}{R}\right]$	
Modulus	$\left.\|Z\|=\sqrt{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right.}\right]$ Ohms

Formulas and Conversions

Power dissipation

Average power,	$P=V I \cos \phi$ Watts
Power dissipation in a resistor	$P=\|I\|^{2} R$ Watts

Rectification

Controlled half wave rectifier	Average DC voltage $=\frac{V_{m}}{2 \pi}(1+\cos \alpha)$ Volts
Controlled full wave rectifier	Average DC voltage $=\frac{V_{m}}{\pi}(1+\cos \alpha)$ Volts

Power Factor

DC Power	$P_{d c}=V I=I^{2} R=\frac{V^{2}}{R}$
AC Power	$P a c=\operatorname{Re}(V . I)=V I \cos \phi$

Power in ac circuits

Quantity	Equation
Resistance	The mean power $=\bar{P}=\mathrm{I}_{\mathrm{rms}} \mathrm{V}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{R}$
Inductance	The instantaneous power $=(\mathrm{Io} \sin \mathrm{wt})(\mathrm{Vo} \sin$ (wt + $\mathrm{n})$
The mean power	$\bar{P}=0$
Capacitance	The instantaneous power $=(\mathrm{Io} \sin (\mathrm{wt}+\mathrm{n} / 2))(\mathrm{V}$ osin $\mathrm{wt})$
The mean power	$\bar{P}=0$
Formula for a.c. power	The mean power $=\bar{P}=\mathrm{I}_{\mathrm{rms}} \mathrm{V}_{\mathrm{rms}} \cos \phi$

Formulas and Conversions

Quantity	Equation
Outside the sphere	$E=\frac{Q}{4 \pi \varepsilon_{o} r^{2}}$
Just outside a uniformly charged conducting sphere or plate	$E=\frac{\sigma}{\varepsilon_{o}}$

- An electric field E is a vector
- The electric field strength is directly proportional to the number of electric field lines per unit cross-sectional area,
- The electric field at the surface of a conductor is perpendicular to the surface.
- The electric field is zero inside a conductor.

Quantity	Equation
Suppose a point charge Q is at A . The work done in bringing a charge q from infinity to some point a distance r from A is	$W=\frac{Q q}{4 \pi \varepsilon_{0} r}$
Electric potential	$V=\frac{W}{q}$
Due to a point charge	$V=\frac{Q}{4 \pi \varepsilon_{0} r}$
Due to a conducting sphere, of radius a, carrying charge $\mathrm{Q}:$ Inside the sphere	$V=\frac{Q}{4 \pi \varepsilon_{o} a}$
Outside the sphere	$V=\frac{Q}{4 \pi \varepsilon_{0} r}$
If the potential at a point is V , then the potential energy of a charge q at that point is	$\mathrm{U}=\mathrm{qV}$
Work done in bringing charge q from A of potential V_{A} to point B of potential V_{B}	$\mathrm{W}=\mathrm{q}\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right)$

Formulas and Conversions

Quantity	Equation
Relation between E and V	$E=-\frac{d V}{d x}$
For uniform electric field	$E=\frac{V}{d}$

Magnetostatics

Physical Quantity	Equation
Magnetic flux density (also called the B- field) is defined as the force acting per unit current length.	$B=\frac{F}{I \ell}$
Force on a current-carrying conductor in a magnetic field	$\mathrm{F}=\mathrm{I} \ell \mathrm{B} \vec{F}=\mathrm{I} \vec{\ell} \cdot \vec{B}$ And Magnitude of $\vec{F}=\mathrm{F}=\mathrm{I} \ell \mathrm{B}$ $\sin \theta$
Force on a moving charged particle in a magnetic field	$\mathrm{F}=\mathrm{q} \vec{v} \cdot \vec{B}$
Circulating Charges	$q v B=\frac{m v^{2}}{r}$

Calculation of magnetic flux density

Physical Quantity	Equation
Magnetic fields around a long straight wire carrying current I	$B=\frac{\mu_{0} I}{2 \pi a}$ where $a=$ perp. distance from a very long straight wire.
Magnetic fields inside a long solenoid, carrying current	$\mathrm{I}: \mathrm{B}=\mu_{0} \mathrm{n} \mathrm{I}$, where $\mathrm{n}=$ number of turns per unit length.
Hall effect At equilibrium	$Q \frac{V_{H}}{d}=Q v B$ and $\quad \mathrm{V}_{\mathrm{H}}=\mathrm{B} v \mathrm{~d}$
The current in a material is given by	$\mathrm{I}=\mathrm{nQAv}$

Formulas and Conversions

Physical Quantity	Equation
The forces between two current-carrying conductors	$F_{21}=\frac{\mu_{o} I_{1} I_{2} \ell}{2 \pi a}$
Physical Quantity	Equation
The torque on a rectangular coil in a magnetic field	$\begin{aligned} & T=F b \sin \theta \\ & =N \text { I } \ell B b \sin \theta \\ & =N \text { IAB } \sin \theta \end{aligned}$
If the coil is in a radial field and the plane of the coil is always parallel to the field, then	$\begin{array}{l\|l} \text { e } & T=N I A B \sin \theta \\ =N \text { I AB } \sin 90^{\circ} \\ =N & I A B \end{array}$
Magnetic flux ϕ	$\phi=\mathrm{BA} \cos \theta$ and Flux-linkage $=N \phi$
Current Sensitivity	$S_{I}=\frac{\theta}{I}=\frac{N A B}{c}$

Quantity	Equation
Self-induction	$L=-\frac{\varepsilon}{d I / d t}$ $\|$N $\phi=\mathrm{L}$ I

Formulas and Conversions

Quantity	Equation
Energy stored in an inductor:	$U=\frac{1}{2} L I^{2}$
Transformers:	$\frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}$
The L R (d.c.) circuit:	$I=\frac{E}{R}\left(1-e^{-R t / L}\right)$
When a great load (or smaller resistance) is connected to the secondary coil, the flux in the core decreases. The e.m.f., ε_{p}, in the primary coil falls.	$\mathrm{V}_{\mathrm{p}}-\varepsilon_{\mathrm{p}=1 \mathrm{R} ;} I=\frac{V_{P}-\varepsilon_{p}}{R}$

Kirchoff's laws
Kirchoff's first law (Junction Theorem)
At a junction, the total current entering the junction is equal to the total current leaving the junction.

Kirchoff's second law (Loop Theorem)
The net e.m.f. round a circuit is equal to the sum of the p.d.s round the loop.

Physical Quantity	Equation
Power	$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}=\mathrm{VI}$
Electric current	$\mathrm{I}=\frac{\mathrm{q}}{\mathrm{t}}$
Work	$\mathrm{W}=\mathrm{qV}$
Ohm's Law	$\mathrm{V}=\mathrm{IR}$
Resistances in Series	$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2} \ldots$
Resistances in Parallel	$\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \cdots$
Magnetic flux	$\Phi=\mathrm{BA}$

Formulas and Conversions

Electromagnetic induction	Emf $=-\mathrm{N} \frac{\left(\Phi_{2}-\Phi_{1}\right)}{\mathrm{t}}$ $\mathrm{emf}=\mathrm{IvB}$
Magnetic force	$\mathrm{F}=\mathrm{I}$ I B
Transformer turns ratio	$\mathrm{Vs}=\frac{\mathrm{Ns}}{\mathrm{Vp}}$ Vp

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.
2. Gamma rays and X-rays occupy a common region.

5.2 Applied Mechanics

5.2.1 Newton's laws of motion

Newton' first law of motion
The inertia of a body is the reluctance of the body to change its state of rest or motion. Mass is a measure of inertia

Newton's second law of motion

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{mv}-\mathrm{mu}}{\Delta \mathrm{t}} \\
& \mathrm{~F}=\mathrm{ma}
\end{aligned}
$$

Formulas and Conversions

Impulse $=$ force \cdot time $=$ change of momentum
$\mathrm{Ft}=\mathrm{mv}-\mathrm{mu}$
Newton's third law of motion
When two objects interact, they exert equal and opposite forces on one another.
"Third-law pair" of forces act on two different bodies.
Universal Law
$\mathrm{F}=\mathrm{Gm}_{\mathrm{s}} \mathrm{m}_{\mathrm{p}} / \mathrm{d}^{2}$
m_{s} is the mass of the sun.
m_{p} is the mass of the planet.
The Universal law and the second law must be consistent
Newton's Laws of Motion and Their Applications

Physical Quantity	Equations
Average velocity	$\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{s}}{\mathrm{t}}=\frac{\mathrm{v}+\mathrm{u}}{2}$
Acceleration	$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$
Momentum	$\mathrm{p}=\mathrm{mv}$
Force	$\mathrm{F}=\mathrm{ma}$
Weight	weight $=\mathrm{mg}$
Work done	$\mathrm{W}=\mathrm{Fs}$
Kinetic energy	$\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$
Gravitational potential energy	$\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$
Equations of motion	$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} ; \quad \mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} ; \quad \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
Centripetal acceleration	$a=\frac{v^{2}}{r}$
Centripetal force	$\mathrm{F}=\mathrm{ma}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
Newton's Law of Universal Gravitation	$\mathrm{F}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$

Formulas and Conversions

Physical Quantity	Equations
Gravitational field strength	$\mathrm{g}=\mathrm{G} \frac{\mathrm{M}}{\mathrm{r}^{2}}$

Physical Quantity	Equations
Moment of a force	$\mathrm{M}=\mathrm{rF}$
Principle of moments	$\sum \mathrm{M}=0$
Stress	Stress $=\frac{\mathrm{F}}{\mathrm{A}}$
Strain	Strain $=\frac{\Delta \mathbf{I}}{\mathbf{I}}$
Young's Modulus	$\mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathbf{I} / \mathbf{I}}$

Scalar: a property described by a magnitude only
Vector: a property described by a magnitude and a direction
Velocity: vector property equal to displacement / time
The magnitude of velocity may be referred to as speed
In SI the basic unit is m / s, in Imperial ft / s
Other common units are $\mathrm{km} / \mathrm{h}, \mathrm{mi} / \mathrm{h}$
Conversions:
$1 \mathrm{~m} / \mathrm{s}=3.28 \mathrm{ft} / \mathrm{s}$
$1 \mathrm{~km} / \mathrm{h}=0.621 \mathrm{mi} / \mathrm{h}$
Speed of sound in dry air is $331 \mathrm{~m} / \mathrm{s}$ at $0^{\circ} \mathrm{C}$ and increases by about $0.61 \mathrm{~m} / \mathrm{s}$ for each ${ }^{\circ} \mathrm{C}$ rise
Speed of light in vaccum equals $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Acceleration: vector property equal to change in velocity time.
In SI the basic unit is $\mathrm{m} / \mathrm{s}^{2}$
In Imperial ft/s ${ }^{2}$

Conversion:

$1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=3.28 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
Acceleration due to gravity, g is $9.81 \mathrm{~m} / \mathrm{s}^{2}$

5.2.2 Linear Velocity and Acceleration

Quantity	Equations
If u initial velocity and v final velocity, then displacement s,	$s=\left(\frac{v+u}{2}\right)$
If t is the elapsed time	$s=u t+\frac{1}{2} a t^{2}$
If a is the acceleration	$v^{2}=u^{2}+2 a s$

Angular Velocity and Acceleration

Quantity	Equations
O angular displacement (radians) $\bullet \omega$ angular velocity (radians/s); $\omega_{1}=$ initial, $\omega_{2}=$ final	$\theta=\frac{\omega_{1}+\omega_{2}}{2} \times t$
a angular acceleration (radians/s ${ }^{2}$)	$\theta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$
Linear displacement	$\mathrm{s}=\mathrm{r} \theta$
Linear velocity ${ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$	
Linear, or tangential acceleration	$\mathrm{v}=\mathrm{r} \omega$

Tangential, Centripetal and Total Acceleration

Quantity	Equations
Tangential acceleration aT is due to angular acceleration a	aT $=\mathrm{ra}$

Formulas and Conversions

Centripetal (Centrifugal) acceleration ac is due to change in direction only	$\mathrm{ac}=\mathrm{v}^{2} / \mathrm{r}=\mathrm{r} \omega^{2}$
Total acceleration, a , of a rotating point experiencing angular acceleration is the vector sum of aT and ac	$\mathrm{a}=\mathrm{aT}+\mathrm{ac}$

5.2.3 Force

Vector quantity, a push or pull which changes the shape and/or motion of an object In SI the unit of force is the newton, N , defined as a kg m
In Imperial the unit of force is the pound lb
Conversion: $9.81 \mathrm{~N}=2.2 \mathrm{lb}$
Weight
The gravitational force of attraction between a mass, m, and the mass of the Earth In SI weight can be calculated from Weight $=\mathrm{F}=\mathrm{mg}$, where $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
In Imperial, the mass of an object (rarely used), in slugs, can be calculated from the
known weight in pounds

$$
\begin{aligned}
& m=\frac{w e i g h t}{g} \\
& g=32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Torque Equation
$\mathrm{T}=\mathrm{I} \alpha$ where T is the acceleration torque in Nm , I is the moment of inertia in $\mathrm{kg} \mathrm{m}^{2}$ and α is the angular acceleration in radians $/ \mathrm{s}^{2}$

Momentum

Vector quantity, symbol p,
$\mathrm{p}=\mathrm{mv}$ [Imperial $\mathrm{p}=(\mathrm{w} / \mathrm{g}) \mathrm{v}$, where w is weight]
in SI unit is kgm / s
Work
Scalar quantity, equal to the (vector) product of a force and the displacement of an
object. In simple systems, where W is work, F force and s distance
$\mathrm{W}=\mathrm{F}$ s
In SI the unit of work is the joule, J , or kilojoule, kJ
$1 \mathrm{~J}=1 \mathrm{Nm}$
In Imperial the unit of work is the ft -lb

Energy is the ability to do work, the units are the same as for work; J, kJ, and $\mathrm{ft}-\mathrm{lb}$

Kinetic Energy

$$
E_{R}=\frac{1}{2} m k^{2} \omega^{2}
$$

Where k is radius of gyration, ω is angular velocity in rad/s
Kinetic Energy of Rotation

$$
E r=\frac{1}{2} I \omega^{2}
$$

Where $\mathrm{I}=\mathrm{mk}^{2}$ is the moment of inertia
5.2.4 Centripetal (Centrifugal) Force

$$
F_{c}=\frac{m v^{2}}{r}
$$

Where r is the radius
Where ω is angular velocity in rad/s
Potential Energy

Quantity	Equation
Energy due to position in a force field, such as gravity	Ep $=\mathrm{m} \mathrm{g} \mathrm{h}$
In Imperial this is usually expressed	Ep $=\mathrm{w} \mathrm{h}$ Where w is weight, and h is height above some specified datum

Thermal Energy

In SI the common units of thermal energy are J , and kJ , (and $\mathrm{kJ} / \mathrm{kg}$ for specific
quantities)
In Imperial, the units of thermal energy are British Thermal Units (Btu)
Conversions
$1 \mathrm{Btu}=1055 \mathrm{~J}$
1 Btu $=778 \mathrm{ft}-\mathrm{lb}$
Electrical Energy
In SI the units of electrical energy are J, kJ and kilowatt hours kWh. In Imperial, the unit of electrical energy is the kWh

Conversions

$1 \mathrm{kWh}=3600 \mathrm{~kJ}$
$1 \mathrm{kWh}=3412 \mathrm{Btu}=2.66 \times 10^{6} \mathrm{ft}-\mathrm{lb}$

Power

Formulas and Conversions

A scalar quantity, equal to the rate of doing work
In SI the unit is the Watt W (or kW)
$1 W=1 \frac{\mathrm{~J}}{\mathrm{~s}}$
In Imperial, the units are:
Mechanical Power - (ft - lb) / s, horsepower h.p.
Thermal Power - Btu / s
Electrical Power - W, kW, or h.p.
Conversions
$746 \mathrm{~W}=1 \mathrm{~h} . \mathrm{p}$.
1h.p. $=550 \frac{f t-l b}{s}$
$1 \mathrm{~kW}=0.948 \frac{B t u}{\mathrm{~s}}$
Pressure
A vector quantity, force per unit area
In SI the basic units of pressure are pascals Pa and kPa
$1 P a=1 \frac{N}{m^{2}}$
In Imperial, the basic unit is the pound per square inch, psi
Atmospheric Pressure
At sea level atmospheric pressure equals 101.3 kPa or 14.7 psi
Pressure Conversions
$1 \mathrm{psi}=6.895 \mathrm{kPa}$
Pressure may be expressed in standard units, or in units of static fluid head, in both SI and Imperial systems
Common equivalencies are:

- $1 \mathrm{kPa}=0.294$ in. mercury $=7.5 \mathrm{~mm}$ mercury
$\bullet 1 \mathrm{kPa}=4.02 \mathrm{in}$. water $=102 \mathrm{~mm}$ water
$\bullet 1 \mathrm{psi}=2.03$ in. mercury $=51.7 \mathrm{~mm}$ mercury
- $1 \mathrm{psi}=27.7 \mathrm{in}$. water $=703 \mathrm{~mm}$ water
- $1 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}=9.81 \mathrm{kPa}$

Other pressure unit conversions:

- 1 bar $=14.5 \mathrm{psi}=100 \mathrm{kPa}$
$\bullet 1 \mathrm{~kg} / \mathrm{cm}^{2}=98.1 \mathrm{kPa}=14.2 \mathrm{psi}=0.981 \mathrm{bar}$
- 1 atmosphere $(\mathrm{atm})=101.3 \mathrm{kPa}=14.7 \mathrm{psi}$

Simple Harmonic Motion
Velocity of $\mathrm{P}=\omega \sqrt{R^{2}-x^{2}} \frac{\mathrm{~m}}{\mathrm{~s}}$

5.2.5 Stress, Strain And Modulus Of Elasticity

Young's modulus and the breaking stress for selected materials

Material	Young modulus $\mathbf{x ~ 1 0}$ $\mathbf{1 1} \mathbf{~ P a ~}$	Breaking stress $\mathbf{x ~ 1 0 ^ { \mathbf { 8 } } \mathbf { ~ P a ~ }}$
Aluminium	0.70	2.4
Copper	1.16	4.9
Brass	0.90	4.7
Iron (wrought)	1.93	3.0
Mild steel	2.10	11.0
Glass	0.55	10
Tungsten	4.10	20
Bone	0.17	1.8

5.3 Thermodynamics

5.3.1 Laws of Thermodynamics

- $\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
- $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
- $\mathrm{W}=\mathrm{nRT}^{2} \ln \mathrm{~V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}$
- $\mathrm{Q}=\operatorname{Cn} \Delta \mathrm{T}$
- $\mathrm{Q}=\mathrm{Cn} \Delta \mathrm{T}$
- $\mathrm{C}_{\mathrm{v}}=3 / 2 \mathrm{R}$
- ${ }^{-} \mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{v}}=\boldsymbol{r}=5 / 3$
$\cdot \cdot \mathrm{e}=1-\mathrm{Qc} / \mathrm{Q}_{\mathrm{h}}=\mathrm{W} / \mathrm{Q}_{\mathrm{h}}$
- $\mathrm{e}_{\mathrm{c}}=1-\mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{h}}$
$-\mathrm{COP}=\mathrm{Q}_{\mathrm{c}} / \mathrm{W}$ (refrigerators)
- $\mathrm{COP}=\mathrm{Q}_{\mathrm{h}} / \mathrm{W}$ (heat pumps)
- Wmax $=\left(1-\mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{h}}\right) \mathrm{Q}_{\mathrm{b}}$
- $\Delta \mathrm{S}=\mathrm{Q} / \mathrm{T}$

Formulas and Conversions

5.3.2 Momentum
$\bullet p=m v$

- $\sum \mathrm{F}=\Delta \mathrm{p} / \Delta \mathrm{t}$
5.3.3 Impulse

$$
\mathrm{I}=\mathrm{F}_{\mathrm{av}} \boldsymbol{\Delta} \mathrm{t}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}
$$

5.3.4 Elastic and Inelastic collision

- $\mathrm{m}_{\mathrm{i}} \mathrm{v}_{1 \mathrm{i}}+\mathrm{m}_{2} \mathrm{~V}_{2 \mathrm{i}}=\mathrm{m}_{1} \mathrm{v}_{1 \mathrm{f}}+\mathrm{m}_{2} \mathrm{~V}_{2 \mathrm{f}}$
- $(1 / 2) m_{i \mathrm{i}} \mathrm{v}_{1 \mathrm{i}}^{2}+(1 / 2) \mathrm{m}_{2} \mathrm{v}_{2 \mathrm{i}}^{2}=1 / 2 \mathrm{~m}_{1} \mathrm{v}_{1 \mathrm{f}}^{2}+1 / 2 \mathrm{~m}_{2} \mathrm{v}_{2 \mathrm{f}}^{2}$
- $\mathrm{m}_{\mathrm{i}} \mathrm{v}_{1 \mathrm{i}}+\mathrm{m}_{2} \mathrm{v}_{2 \mathrm{i}}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}_{\mathrm{f}}$
5.3.5 Center of Mass
- $\mathrm{x}_{\mathrm{cm}}=\sum \mathrm{mx} / \mathrm{M}$
- $\mathrm{V}_{\mathrm{cm}}=\sum \mathrm{mv} / \mathrm{M}$
- $\mathrm{A}_{\mathrm{cm}}=\sum \mathrm{ma} / \mathrm{M}$
- $\mathrm{MA}_{\mathrm{cm}}=\mathrm{F}_{\text {net }}$
5.3.6 Angular Motion
- $\mathrm{s}=\mathrm{r} \theta$
- $\mathrm{v}_{\mathrm{t}}=\mathrm{r} \omega$
- $\mathrm{a}_{\mathrm{t}}=\mathrm{r} \alpha$
- $\mathrm{a}_{\mathrm{c}}=\mathrm{v}_{\mathrm{t}}^{2} / \mathrm{r}=\mathrm{r} \omega^{2}$
$\bullet \omega=2 \pi / T$
- $1 \mathrm{rev}=2 \pi \mathrm{rad}=360^{\circ}$

For constant α

- $\omega=\omega_{0}+\alpha \mathrm{t}$
- $\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$
- $\theta=\omega_{0} t+1 / 2 \alpha t^{2}$
$\bullet \theta=\left(\omega_{0}+\omega\right) \cdot \mathrm{t} / 2$
- $\mathrm{I}=\sum \mathrm{mr}^{2}$
- $\mathrm{KE}_{\mathrm{R}}=1 / 2 \mathrm{I} \omega^{2}$
- $\tau=\mathrm{rF}$
- $\sum \tau=\mathrm{I} \alpha$
- $\mathrm{W}_{\mathrm{R}}=\tau \theta$
- $\mathrm{L}=\mathrm{I} \omega$
- $\sum \tau=\mathrm{I} \alpha$
- $\mathrm{W}_{\mathrm{R}}=\tau \theta$
- $\mathrm{W}_{\mathrm{R}}=\tau$
- $\mathrm{L}=\mathrm{I} \omega$
- $\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}$
5.3.7 Conditions of Equilibrium
- $\sum \mathrm{F}_{\mathrm{x}}=0$
- $\sum \mathrm{Fy}=0$
- $\Sigma \tau=0$
(any axis)
5.3.8 Gravity
- $\mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
- $\mathrm{T}=2 \pi / \mathrm{Vr}^{3} / \mathrm{GM}_{\mathrm{s}}$
$\bullet \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$
$\bullet g=\mathrm{GM}_{\mathrm{E}} / \mathrm{R}_{\mathrm{E}}^{2}$
- $\mathrm{PE}=-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}$
- $\mathrm{v}_{\mathrm{e}}=\sqrt{ } 2 \mathrm{GM}_{\mathrm{E}} / \mathrm{R}_{\mathrm{E}}$
- $\mathrm{v}_{\mathrm{s}}=\sqrt{ } \mathrm{GM}_{\mathrm{E}} / \mathrm{r}$
$\bullet \mathrm{M}_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}$
$-\mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}$
5.3.9 Vibrations \& Waves
- F = -kx
- PE $_{s}=1 / 2 \mathrm{kx}^{2}$
- $\mathrm{x}=\mathrm{A} \cos \theta=\mathrm{A} \cos (\omega \mathrm{t})$
$\bullet v=-A \omega \sin (\omega \mathrm{t})$
- $\mathrm{a}=-\mathrm{A} \omega^{2} \cos (\omega \mathrm{t})$
- $\omega=\sqrt{k} / \mathrm{m}$
- $\mathrm{f}=1 / \mathrm{T}$
- $\mathrm{T}=2 \pi \sqrt{ } \mathrm{~m} / \mathrm{k}$
- $\mathrm{E}=1 / 2 \mathrm{kA}{ }^{2}$
-T $=2 \pi \sqrt{ } \mathrm{~L} / \mathrm{g}$
- $\mathrm{v}_{\text {max }}=\mathrm{A} \omega$
- $\mathrm{a}_{\text {max }}=\mathrm{A} \omega^{2}$
$\bullet v=\lambda \mathrm{f} \quad \mathrm{v}=\sqrt{ } \mathrm{F}_{\mathrm{T}} / \mu$
- $\mu=\mathrm{m} / \mathrm{L}$
- $\mathrm{I}=\mathrm{P} / \mathrm{A}$
- $\beta=10 \log \left(I / I_{0}\right)$
- $\beta=10 \log \left(1 / 0^{0}\right)$
- $f^{\prime}=f\left[\left(1 \pm v_{0} / v\right) /\left(1 \mp v_{s} / v\right)\right]$
- Surface area of the sphere $=4 \pi \mathrm{r}^{2}$
- Speed of sound waves $=343 \mathrm{~m} / \mathrm{s}$

5.3.10 Standing Waves

- $\mathrm{f}_{\mathrm{n}}=\mathrm{nf}_{1}$
- $\mathrm{f}_{\mathrm{n}}=\mathrm{nv} / 2 \mathrm{~L}$ (air column, string fixed both ends) $\mathrm{n}=1,2,3,4 \ldots \ldots$.
$\bullet \mathrm{f}_{\mathrm{n}}=\mathrm{nv} / 4 \mathrm{~L}$ (open at one end) $\mathrm{n}=1,3,5,7 \ldots \ldots \ldots$.
5.3.11 Beats
- $\mathrm{f}_{\text {beats }}=\left|\mathrm{f}_{1}-\mathrm{f}_{2}\right|$
\bullet Fluids
- $\rho=\mathrm{m} / \mathrm{V}$
- $\mathrm{P}=\mathrm{F} / \mathrm{A}$
- $\mathrm{P}_{2}=\mathrm{P}_{1}+\rho g h$
- $\mathrm{P}_{\text {atm }}=1.01 \times 10^{5} \mathrm{~Pa}=14.7 \mathrm{lb} / \mathrm{in}^{2}$
$-F_{B}=\rho_{\mathrm{f}} \mathrm{Vg}=W_{\mathrm{f}}$ (weight of the displaced fluid)
- $\rho_{\mathrm{o}} / \rho_{\mathrm{f}}=\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{o}}$ (floating object)
- $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}$
- $\mathrm{W}_{\mathrm{a}}=\mathrm{W}-\mathrm{F}_{\mathrm{B}}$

Equation of Continuity: $\mathrm{Av}=$ constant
Bernoulli's equation: $P+1 / 2 \rho v^{2}+\rho g y=0$

5.3.12 Temperature and Heat

- $\mathrm{T}_{\mathrm{F}}=9 / 5 \mathrm{~T}_{\mathrm{C}}+32$
- $\mathrm{T}_{\mathrm{C}}=5 / 9\left(\mathrm{~T}_{\mathrm{F}}-32\right)$
- $\Delta \mathrm{T}_{\mathrm{F}}=9 / 5 \Delta \mathrm{~T}_{\mathrm{C}}$
- $\mathrm{T}=\mathrm{T}_{\mathrm{C}}+273.15$
- $\rho=\mathrm{m} / \mathrm{v}$
- $\Delta \mathrm{L}=\alpha \mathrm{L}_{0} \Delta \mathrm{~T}$
- $\Delta \mathrm{A}=\gamma \mathrm{A}_{0} \Delta \mathrm{~T}$
- $\Delta \mathrm{V}=\beta \mathrm{V}_{0} \Delta \mathrm{~T} \beta=3 \alpha$
$-\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{Q}=\mathrm{mL}$
- 1 kcal = 4186 J
- Heat Loss = Heat Gain
- $\mathrm{Q}=(\mathrm{kA} \Delta \mathrm{T}) \mathrm{t} / \mathrm{L}$,
- $\mathrm{H}=\mathrm{Q} / \mathrm{t}=(\mathrm{kA} \Delta \mathrm{T}) / \mathrm{L}$
$-\mathrm{Q}=\mathrm{e} \mathrm{T}^{4} \mathrm{At}$
- $\mathrm{P}=\mathrm{Q} / \mathrm{t}$
- $\mathrm{P}=\sigma \mathrm{AeT}^{4}$
- $\mathrm{P}_{\text {net }}=\sigma \operatorname{Ae}\left(\mathrm{T}^{4}-\mathrm{T}_{\mathrm{S}}{ }^{4}\right)$
$\bullet \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

5.3.13 Ideal Gases

- $\mathrm{PV}=\mathrm{nRT}$
$\bullet \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
- $\mathrm{PV}=\mathrm{NkT}$
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ molecules $/ \mathrm{mol}$
$\bullet \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
- $\mathrm{M}=\mathrm{N}_{\mathrm{A}} \mathrm{m}$
- $(\mathrm{KE})_{\mathrm{av}}=\left(1 / 2 \mathrm{mv}^{2}\right)_{\mathrm{av}}=3 / 2 \mathrm{kT}$
- $\mathrm{U}=3 / 2 \mathrm{NkT}=3 / 2 \mathrm{nRT}$
5.3.14 Elastic Deformation
- $\mathrm{P}=\mathrm{F} / \mathrm{A}$
$\bullet \mathrm{Y}=\mathrm{FL}_{0} / \mathrm{A} \Delta \mathrm{L}$
- $\mathrm{S}=\mathrm{Fh} / \mathrm{A} \Delta \mathrm{x}$
- $\mathrm{B}=-\mathrm{V}_{0} \Delta \mathrm{~F} / \mathrm{A} \Delta \mathrm{V}$
- Volume of the sphere $=4 \pi \mathrm{r}^{3} / 3$
$-1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$
5.3.15 Temperature Scales
- ${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
- ${ }^{\circ} \mathrm{F}=5 / 9\left({ }^{\circ} \mathrm{C}+32\right)$
- ${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460$ (R Rankine)
$\bullet \mathrm{K}={ }^{\circ} \mathrm{C}+273$ (K Kelvin)
5.3.16 Sensible Heat Equation
- $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- $\mathrm{M}=$ mass
- $\mathrm{C}=$ specific heat
- $\Delta \mathrm{T}=$ temperature chance

5.3.17 Latent Heat

- Latent heat of fusion of ice $=335 \mathrm{~kJ} / \mathrm{kg}$
- Latent heat of steam from and at $100^{\circ} \mathrm{C}=2257 \mathrm{~kJ} / \mathrm{kg}$
$\bullet 1$ tonne of refrigeration $=335000 \mathrm{~kJ} /$ day $=233 \mathrm{~kJ} / \mathrm{min}$

5.3.18 Gas Laws

Boyle's Law
When gas temperature is constant
$\mathrm{PV}=$ constant or
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
Where P is absolute pressure and V is volume
Charles' Law
When gas pressure is constant,
$\frac{V}{T}=$ const.
T
or
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
where V is volume and T is absolute temperature

Formulas and Conversions

Gay-Lussac's Law
When gas volume is constant,
$\frac{P}{T}=$ const.
or
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
where P is absolute pressure and T is absolute temperature
General Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=\text { const. }
$$

$\mathrm{PV}=\mathrm{mR} \mathrm{T}$ where $\mathrm{P}=$ absolute pressure (kPa)
$\mathrm{V}=$ volume $\left(\mathrm{m}^{3}\right)$
$\mathrm{T}=$ absolute temp (K)
$\mathrm{m}=$ mass (kg)
$\mathrm{R}=$ characteristic constant $(\mathrm{kJ} / \mathrm{kgK})$

Also

$\mathrm{PV}=\mathrm{nRoT}$ where $\mathrm{P}=$ absolute pressure (kPa)
$\mathrm{V}=$ volume (m^{3})
T = absolute temperature K
$\mathrm{N}=$ the number of kmoles of gas
Ro $=$ the universal gas constant $8.314 \mathrm{~kJ} / \mathrm{kmol} / \mathrm{K}$
5.3.19 Specific Heats Of Gases

GAS	Specific Heat at Constant Pressure $\mathbf{k J} / \mathbf{k g K}$ or $\mathbf{k J} / \mathbf{k g} \mathbf{C}^{\circ}$	Specific Heat at Constant Volume $\mathbf{k J} / \mathbf{k g K} \mathbf{o r}$ $\mathbf{k J} / \mathbf{k g}{ }^{\circ} \mathbf{C}$	Ratio of Specific $\mathbf{Y =} \mathbf{c p} / \mathbf{c v}$
Air	1.005	0.718	1.40
Ammonia	2.060	1.561	1.32
Carbon Dioxide	0.825	0.630	1.31
Carbon Monoxide	1.051	0.751	1.40

Formulas and Conversions

GAS	Specific Heat at Constant Pressure $\mathbf{k J /} / \mathbf{k g K}$ or $\mathbf{k J} / \mathbf{k g}{ }^{\circ} \mathbf{C}$	Specific Heat at Constant Volume $\mathbf{k J /} / \mathbf{k g K}$ or $\mathbf{k J} / \mathbf{k g}{ }^{\circ} \mathbf{C}$	Ratio of Specific $\mathbf{Y =} \mathbf{c p} / \mathbf{c v}$
Helium	5.234	3.153	1.66
Hydrogen	14.235	10.096	1.41
Hydrogen Sulphide	1.105	0.85	1.30
Methane	2.177	1.675	1.30
Nitrogen	1.043	0.745	1.40
Oxygen	0.913	0.652	1.40
Sulphur Dioxide	0.632	0.451	1.40

5.3.20 Efficiency of Heat Engines

Carnot Cycle

$$
\eta=\frac{T_{1}-T_{2}}{T_{1}}
$$

where T_{1} and T_{2} are absolute temperatures of heat source and sink
Air Standard Efficiencies
Spark Ignition Gas and Oil Engines (Constant Volume Cycle)

$$
\eta=1-\frac{1}{r_{v}{ }^{(\gamma-1)}}
$$

$\mathrm{r}_{\mathrm{v}}=$ compression ratio
$\gamma=$ specific heat (constant pressure) / Specific heat (constant volume)
Diesel Cycle

$$
\eta=1-\frac{R \gamma-1)}{r_{v}^{\gamma-1} \gamma(R-1)}
$$

Where $\mathrm{r}=$ ratio of compression
$\mathrm{R}=$ ratio of cut-off volume to clearance volume
High Speed Diesel (Dual-Combustion) Cycle

$$
\eta=1 \frac{k \beta^{\gamma}-1}{r_{v}^{\gamma-1}[(k-1)+\gamma k(\beta-1)]}
$$

Formulas and Conversions

Where $\mathrm{r}_{\mathrm{v}}=$ cylinder volume / clearance volume
$\mathrm{k}=$ absolute pressure at the end of constant V heating (combustion) / absolute pressure at the beginning of constant V combustion
$\beta=$ volume at the end of constant P heating (combustion) / clearance volume

Gas Turbines (Constant Pressure or Brayton Cycle)

$$
\eta=1-\frac{1}{r_{p}\left(\frac{\gamma-1}{r}\right)}
$$

where r_{p} = pressure ratio = compressor discharge pressure / compressor intake pressure

5.3.21 Heat Transfer by Conduction

$\left.\begin{array}{|l|l|}\hline \text { Material } & \begin{array}{l}\text { Coefficient of Thermal } \\ \text { Conductivity } \\ \text { W/ m }\end{array} \\ \hline{ }^{\mathbf{C}}\end{array}\right]$

Formulas and Conversions

5.3.22 Thermal Expansion of Solids

Increase in length $=\mathrm{L} \alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Where $\mathrm{L}=$ original length
$\alpha=$ coefficient of linear expansion
$\left(T_{2}-T_{1}\right)=$ rise in temperature
$\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=$ rise in temperature
Increase in volume $=\mathrm{V} \beta\left(\mathrm{T}_{2}\right.$
Increase in volume $=\mathrm{V} \beta(\mathrm{T}$
Where $\mathrm{V}=$ original volume
$\beta=$ coefficient of volumetric expansion
$\left(T_{2}-T_{1}\right)=$ rise in temperature
Coefficient of volumetric expansion $=$ Coefficient of linear expansion $\times 3$
$\beta=3 a$

5.3.23 Chemical Heating Value of a Fue

Chemical Heating Value MJ per kg of fuel $=33.7 \mathrm{C}+144\left(\mathrm{H}_{2}-\frac{\mathrm{O}_{2}}{8}\right)+9.3 \mathrm{~S}$
C is the mass of carbon per kg of fuel
H_{2} is the mass of hydrogen per kg of fue
O_{2} is the mass of oxygen per kg of fuel
S is the mass of sulphur per kg of fuel
Theoretical Air Required to Burn Fuel

$$
\text { Air }(\mathrm{kg} \text { per } \mathrm{kg} \text { of fuel })=\left[\frac{8}{3} \mathrm{C}+8\left(\mathrm{H}_{2}-\mathrm{O}_{2}\right)+S\right] \frac{100}{23}
$$

Air Supplied from Analysis of Flue Gases
Air in kg per kg of fuel $=\frac{N_{2}}{33\left(\mathrm{CO}_{2}+\mathrm{CO}\right)} \times C$
Boiler Formulae
Equivalent evaporation $=\frac{m_{s}\left(h_{1}-h_{2}\right)}{2257 \mathrm{kj} / \mathrm{kg}}$
Factor of evaporation $=\frac{\left(h_{1}-h_{2}\right)}{2257 \mathrm{kj} / \mathrm{kg}}$
Boiler Efficiency

$$
m_{s}\left(h_{1}-h_{2}\right)
$$

$m f \times$ (calorificvalue)
Where
$\mathrm{m}_{\mathrm{s}}=$ mass flow rate of steam
$\mathrm{h}_{1}=$ enthalpy of steam produced in boiler
$h_{2}=$ enthalpy of feedwater to boiler
$\mathrm{m}_{\mathrm{f}}=$ mass flow rate of fuel
Formulas and Conversions

					\bigcirc		
				\bigcirc		$\begin{aligned} & \text { Fi} \\ & \mathrm{E}^{2} \\ & \mathrm{~N}^{2} \end{aligned}$	
		$\begin{aligned} & \underset{\mathrm{F}}{1} \\ & \mathrm{~N}^{2} \\ & \stackrel{\mathrm{E}}{3} \end{aligned}$		-		$\begin{aligned} & \underset{\mathrm{F}}{1} \\ & \mathrm{~N}^{\prime} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	
$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$		-	$\underset{\substack{0 \\ i}}{\substack{i}}$		$\begin{aligned} & \text { た } \\ & \text { I } \\ & \text { E } \\ & \underset{\Xi}{3} \end{aligned}$		
					\bigcirc		
	?	:		:			
	$\stackrel{i}{\circ}$	$\begin{aligned} & N \\| R^{N} \\ & \pi N^{\prime} \end{aligned}$	'	:	$\frac{\sqrt{2 n}}{\underbrace{n}_{n}}$		
	i	:	;				
$\frac{\stackrel{2}{5}}{\frac{0}{3}} \frac{5}{6}$		8	-	-	λ	ᄃ	

- $\varepsilon \angle$

Formulas and Conversions		
Specific Heat and Linear Expansion of Solids	Mean Specific Heat between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C} \mathbf{~ k J} / \mathbf{k g K}$ or $\mathbf{k J} / \mathbf{k g}^{\circ} \mathrm{C}$	Coefficient of Linear Expansion between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ (multiply by $\mathbf{1 0}^{-6}$)
Aluminum	0.909	23.8
Antimony	0.209	17.5
Bismuth	0.125	12.4
Brass	0.383	18.4
Carbon	0.795	7.9
Cobalt	0.402	12.3
Copper	0.388	16.5
Glass	0.896	9.0
Gold	0.130	14.2
Ice (between $-20^{\circ} \mathrm{C} \& 0^{\circ} \mathrm{C}$)	2.135	50.4
Iron (cast)	0.544	10.4
Iron (wrought)	0.465	12.0
Lead	0.131	29.0
Nickel	0.452	13.0
Platinum	0.134	8.6
Silicon	0.741	7.8
Silver	0.235	19.5
Steel (mild)	0.494	12.0
Tin	0.230	26.7
Zinc	0.389	16.5

suo!s.əəлиоэ pue se|nu...」

5.4 Fluid Mechanics
5.4.1 Discharge from an Orifice

Let $\mathrm{A}=$ cross-sectional area of the orifice $=$	$\frac{\pi}{4} d^{2}$
And $\mathrm{Ac}=$ cross-sectional area of the jet at the vena conrtacta	$\frac{\pi}{4} d_{c}{ }^{2}$
Then $\mathrm{Ac}=\mathrm{CcA}$	Or $C_{c}=\frac{A_{c}}{A}=\left(\frac{d_{c}}{d}\right)^{2}$

Where C_{c} is the coefficient of contraction

Vena contracta

At the vena contracta, the volumetric flow rate Q of the fluid is given by $\bullet \mathrm{Q}=$ area of the jet at the vena contracta \cdot actual velocity $=\mathrm{A}_{\mathrm{c}} \mathrm{V}$

- Or $Q=C_{c} A C_{v} \sqrt{2 g h}$
- Typically, values for Cd vary between 0.6 and 0.65
- Circular orifice: Q = 0.62 A $\sqrt{ } 2 g h$
- Where $\mathrm{Q}=$ flow $\left(\mathrm{m}^{3} / \mathrm{s}\right) \mathrm{A}=$ area $\left(\mathrm{m}^{2}\right) \mathrm{h}=$ head (m)
- Rectangular notch: $\mathrm{Q}=0.62(\mathrm{~B} \cdot \mathrm{H}) 2 / 3 \sqrt{ } 2 \mathrm{gh}$

Where B = breadth (m)
$\mathrm{H}=$ head (m above sill)
Triangular Right Angled Notch: Q = $2.635 \mathrm{H}^{5 / 2}$
Where H = head (m above sill)

5.4.2 Bernoulli's Theory

$H=h+\frac{P}{w}+\frac{v^{2}}{2 g}$
$\mathrm{H}=$ total head (meters)
$\mathrm{w}=$ force of gravity on $1 \mathrm{~m}^{3}$ of fluid (N)
$\mathrm{h}=$ height above datum level (meters)
$\mathrm{v}=$ velocity of water (meters per second)
$\mathrm{P}=$ pressure $\left(\mathrm{N} / \mathrm{m}^{2}\right.$ or Pa$)$
Loss of Head in Pipes Due to Friction
Loss of head in meters $=f \frac{L}{d} \frac{v^{2}}{2 g}$
L = length in meters
$\mathrm{v}=$ velocity of flow in meters per second
$\mathrm{d}=$ diameter in meters
$\mathrm{f}=$ constant value of 0.01 in large pipes to 0.02 in small pipes
5.4.3 Actual pipe dimensions

Nominal pipe size (in)	Outside diameter $(\mathbf{m m})$	Inside diameter $\mathbf{(m m)}$	Wall thickness $\mathbf{(m m)}$	Flow area $\mathbf{(m}^{\mathbf{2})}$
$1 / 8$	10.3	6.8	1.73	3.660×10^{-5}
$1 / 4$	13.7	9.2	2.24	6717×10^{-5}
$3 / 8$	17.1	12.5	2.31	1.236×10^{-4}
$1 / 2$	21.3	15.8	2.77	1.960×10^{-4}
$3 / 4$	26.7	20.9	2.87	3.437×10^{-4}
1	33.4	26.6	3.38	5.574×10^{-4}
$11 / 4$	42.2	35.1	3.56	9.653×10^{-4}
$1 \underline{1 / 2}$	48.3	40.9	3.68	1.314×10^{-3}
2	60.3	52.5	3.91	2.168×10^{-3}

Formulas and Conversions

Formulas and Conversions

Nominal pipe size (in)	Outside diameter (mm)	Inside diameter (mm)	Wall thickness (mm)	$\begin{aligned} & \text { Flow area } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$
2112	73.0	62.7	5.16	3.090×10^{-3}
3	88.9	77.9	5.49	4.768×10^{-3}
31/2	101.6	90.1	5.74	6.381×10^{-3}
4	114.3	102.3	6.02	8.213×10^{-3}
5	141.3	128.2	6.55	1.291×10^{-2}
6	168.3	154.1	7.11	1.864×10^{-2}
8	219.1	202.7	8.18	3.226×10^{-2}
10	273.1	254.5	9.27	5.090×10^{-2}
12	323.9	303.2	10.31	7.219×10^{-2}
14	355.6	333.4	11.10	8.729×10^{-2}
16	406.4	381.0	12.70	0.1140
18	457.2	428.7	14.27	0.1443
20	508.0	477.9	15.06	0.1794
24	609.6	574.7	17.45	0.2594

Chapter 6

References

6.1 Periodic Table of Elements

$\begin{gathered} A \\ 1 \end{gathered}$																	8 A 18
1 H	2 A											3A	4A	5A	6 A	7 A	2 He
$\begin{gathered} 1.00 \\ 8 \end{gathered}$	2											13	14	15	16	17	4.00 3
$\begin{array}{\|c\|} \hline 3 \\ \mathrm{Li} \\ 6.94 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 4 \\ \text { Be } \\ 9.01 \\ \hline 2 \\ \hline \end{array}$											5 B 10.8 1 1	$\begin{array}{\|c} \hline 6 \\ \text { C } \\ 12.0 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 7 \\ N \\ 14.0 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ 16.0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.0 \\ 0 \\ \hline \end{gathered}$	10 Ne 20.1 88
$\begin{array}{\|c\|} \hline 11 \\ \mathrm{Na} \\ 22.9 \\ 9 \end{array}$	$\begin{gathered} 12 \\ \mathrm{Mg} \\ 24.3 \\ \hline \end{gathered}$	38 3	$\begin{gathered} 4 B \\ 4 \end{gathered}$	58 5	$\begin{gathered} \text { 6B } \\ 6 \end{gathered}$	$\begin{gathered} 7 B \\ 7 \end{gathered}$	$\begin{gathered} 8 \mathrm{~B} \\ 8 \end{gathered}$	$\begin{gathered} 8 \mathrm{~B} \\ 9 \end{gathered}$	$\begin{aligned} & 8 \mathrm{~B} \\ & 10 \end{aligned}$	18 11	$\begin{aligned} & 2 \mathrm{~B} \\ & 12 \end{aligned}$	$\begin{array}{\|r} \hline 13 \\ \text { Al } \\ 26.9 \\ 8 \end{array}$	$\begin{gathered} 14 \\ \text { si } \\ 28.0 \\ 9 \end{gathered}$	$\begin{gathered} 15 \\ P \\ 30.9 \\ 7 \end{gathered}$	$\begin{gathered} 16 \\ 5 \\ 32.0 \\ 7 \end{gathered}$	$\begin{gathered} 17 \\ \text { cl } \\ 35.4 \\ 5 \end{gathered}$	18 Ar 39.9 5
$\begin{array}{\|c} \hline 19 \\ K \\ 39.1 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ \mathrm{Ca} \\ 40.0 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 21 \\ \mathrm{Sc} \\ 44.9 \\ \hline 6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 22 \\ \mathrm{Ti} \\ 47.9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 23 \\ v \\ 50.9 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c} \hline 24 \\ \mathrm{Cr} \\ 52.0 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 25 \\ \mathrm{Mn} \\ 54.9 \\ \hline 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 26 \\ \mathrm{Fe} \\ 55.8 \\ \hline \\ \hline \end{array}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.9 \\ 3 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 28 \\ \mathrm{Ni} \\ 58.7 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 29 \\ \text { cu } \\ 63.5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 30 \\ \mathrm{Zn} \\ 65.3 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 31 \\ \text { Ga } \\ 69.7 \\ \hline \end{array}$	$\begin{gathered} \hline 32 \\ G e \\ 72.5 \\ \hline 9 \\ \hline \end{gathered}$	3 As A4.9 2	$\begin{array}{\|c\|} \hline 34 \\ \text { se } \\ 78.9 \\ 6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 35 \\ \mathrm{Br} \\ 79.9 \\ 0 \\ \hline \end{array}$	36 Kr 83.8 0
$\begin{gathered} 37 \\ \mathrm{Rb} \\ 85.4 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{sr} \\ 87.6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 39 \\ Y \\ 88.9 \\ 1 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 40 \\ \mathrm{Zr} \\ 91.2 \\ \hline \end{array}$	$\begin{gathered} \hline 41 \\ \mathrm{Nb} \\ 92.9 \\ 1 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 42 \\ \text { Mo } \\ 95.9 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 43 \\ \text { Tc } \\ 97.9 \end{array}$	$\begin{array}{\|c\|} \hline 44 \\ \text { Ru } \\ 101 . \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ \mathrm{Rh} \\ 102 . \\ \hline 9 \\ \hline \end{array}$	$\begin{gathered} \hline 46 \\ \text { Pd } \\ 106 . \\ 4 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 47 \\ \text { Ag } \\ 107 . \\ \hline \end{array}$	$\begin{gathered} \hline 48 \\ \mathrm{Cd} \\ 112 . \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \text { 1n } \\ 114 . \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { Sn } \\ 118 . \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ 5 b \\ 121 . \\ \hline 8 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 52 \\ \mathrm{Te} \\ 127 . \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 53 \\ 1 \\ 126 . \\ 9 \end{array}$	54 Xe 131. 3
$\begin{gathered} 55 \\ \text { Cs } \\ 132 . \\ 9 . \end{gathered}$	$\begin{array}{\|c\|} \hline 56 \\ \text { Ba } \\ 137 . \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 57 \\ \text { La } \\ 138 . \\ 9 \end{array}$	$\begin{gathered} 72 \\ \text { Hf } \\ \text { H78. } \\ 5 \end{gathered}$	$\begin{gathered} \hline 73 \\ \hline \text { Ta } \\ 180 . \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline 74 \\ w \\ 183 . \\ 8 \end{array}$	$\begin{gathered} \hline 75 \\ \mathrm{Re} \\ 186 . \\ 26 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 76 \\ \text { Os } \\ 190 . \\ 2 \end{array}$	$\begin{gathered} \hline 77 \\ 1 \mathrm{r} \\ 192 . \\ \hline 2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 78 \\ \text { Pt } \\ 195 . \\ 1 \end{array}$	$\begin{gathered} 79 \\ \text { Au } \\ 197 . \\ 0 \end{gathered}$	$\begin{gathered} \hline 80 \\ \mathrm{Hg} \\ 200 . \\ 6 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{~T} \\ 204 . \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \mathrm{~Pb} \\ 207 . \\ \hline 2 \end{gathered}$	$\begin{array}{\|c\|} \hline 83 \\ \text { Bi } \\ 209 . \\ 0 \end{array}$	84 P0 (209)	$\left.\begin{array}{\|c\|} \hline 85 \\ \text { At } \\ (210) \end{array} \right\rvert\,$	(86 Rn (22)
$\begin{array}{\|c\|} \hline 87 \\ \mathrm{Fr} \\ (223) \end{array}$	$\begin{gathered} \hline 88 \\ \text { Ra } \\ 226 . \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 89 \\ A c \\ 227 . \\ \hline \\ \hline \end{gathered}$	$\begin{aligned} & 104 \\ & \mathrm{Rf} \\ & (261) \end{aligned}$	$\begin{array}{\|c\|} \hline 105 \\ \mathrm{Db} \\ (262) \end{array}$	$\left.\begin{array}{\|c\|} \hline 106 \\ \mathrm{sg} \\ (266) \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 107 \\ \mathrm{Bh} \\ (264) \end{array}$	$\begin{array}{\|c\|} \hline 108 \\ \text { Hs } \\ (265) \end{array}$	$\begin{array}{\|c\|} \hline 109 \\ \mathrm{Mt} \\ (268) \end{array}$									

$\begin{array}{\|c} 58 \\ \text { Ce } \\ 140 . \\ \hline \end{array}$	$\begin{gathered} 59 \\ \hline \text { Pr } \\ 140 . \\ 9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ 144 . \\ \hline 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 61 \\ \text { Pm } \\ (145) \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ \mathrm{Sm} \\ 150 . \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eu } \\ 152 . \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 64 \\ \text { Gd } \\ 157 . \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 65 \\ \text { Tb } \\ 158 . \\ 9 \end{array}$	$\begin{array}{c\|} \hline 66 \\ \text { Dy } \\ 162 . \\ 5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 67 \\ \text { Ho } \\ 164 . \\ \hline 9 \\ \hline \end{array}$	$\begin{gathered} 68 \\ \text { Er } \\ 167 . \\ 1 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 69 \\ \mathrm{Tm} \\ 168 . \\ 9 \end{array}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ 173 . \\ 0 \end{gathered}$	71 Lu 175. 0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
232.	231.	238.	237.	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)
	0	0	0										

Formulas and Conversions

6.2 Resistor Color Coding

Color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet / Purple	7
Grey	8
White	9

Courtesy: Dick Smith Electronics, Australia

ABOUT IDC Technologies

As one of the world's leading engineering and technology training, consulting and publishing companies, IDC Technologies' strength lies in providing practical and useful technical training for engineers, technicians and other technical personnel. Your business grows by developing the skills and expertise of your most important asset - your people. For the past 12 years, we have helped our clients in achieving their business objectives by developing their people.

We specialize in the fields of electrical systems, industrial data communications, telecommunications, automation and control, mechanical engineering, project and financial management and are continually adding to our portfolio of over 140 different workshops. Our instructors are highly respected in their fields of expertise and in the last ten years have trained over 140,000 engineers, technicians and other technical personnel. With offices conveniently located worldwide, IDC Technologies has an enthusiastic team of professional engineers, technicians and support staff who are committed to providing the highest quality of training, publishing and consultancy services.

Our worldwide offices are located in:
Australia
Canada
Ireland
New Zealand
Singapore
South Africa
United Kingdom
USA
For more information visit our website: www.idc-online.com
or email us on idc@idc-online.com

Training Workshops and Books

Data Communications \& Networking

Practical Data Communications \& Networking for Engineers and Technicians Practical DNP3, 60870.5 \& Modern SCADA Communication Systems
Practical Troubleshooting \& Problem Solving of Ethernet Networks
Practical FieldBus and Device Networks for Engineers and Technicians Practical Fiber Optics for Engineers and Technicians
Practical Troubleshooting \& Problem Solving of Industrial Data Communications
Practical Industrial Networking for Engineers \& Technicians
Practical TCP/IP and Ethernet Networking for Industry
Practical Fundamentals of Telecommunications and Wireless Communications Practical Radio \& Telemetry Systems for Industry
Practical TCP/IP Troubleshooting \& Problem Solving for Industry
Practical Wireless Networking Technologies for Industry
Practical Routers \& Switches (Including TCP/IP \& Ethernet) for Engineers and Technicians
Best Practice in Industrial Data Communications Systems
Practical Fundamentals of VOICE over IP (VoIP) for Engineers \& Technicians
Practical Troubleshooting, Design \& Selection of Fiber Optic Systems for Industry Troubleshooting Industrial Ethernet \& TCP/IP Networks
Back to Basics Wireless Networking \& Telemetry Systems for Industry Wireless Networking \& Radio Telemetry Systems for Industry

Electrical Power

Practical Electrical Network Automation \& Communication Systems
Practical Troubleshooting of Electrical Equipment and Control Circuits Practical Grounding/Earthing, Bonding, Lightning \& Surge Protection Practical High Voltage Safety Operating Procedures for Engineers and Technicians Practical Power Distribution
Practical Power Quality: Problems \& Solutions
Practical Power Systems Protection for Engineers and Technicians
Practical Variable Speed Drives for Instrumentation and Control Systems
Practical Electrical Wiring Standards - IEE BS7671-2001 Edition
Practical Wind \& Solar Power - Renewable Energy Technologies
Practical Distribution \& Substation Automation (incl. Communications) for Electrical Power Systems
Safe Operation \& Maintenance of Circuit Breakers and Switchgear
Troubleshooting, Maintenance and Protection of AC Electrical Motors \& Drives Practical Power Transformers - Operation and Maintenance
Lightning, Surge Protection and Earthing of Electrical \& Electronic Systems

Electronics

Practical Digital Signal Processing Systems for Engineers and Technicians
Practical Embedded Controllers: Troubleshooting and Design
Practical EMC and EMI Control for Engineers and Technicians
Practical Industrial Electronics for Engineers and Technicians
Practical Image Processing and Applications
Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout of
Electronic Systems
Practical Power Electronics \& Switch Mode Power Supply Design for Industry

Information Technology

Industrial Network Security for SCADA, Automation, Process Control and PLC Systems Practical Web-Site Development \& E-Commerce Systems for Industry

Chemical Engineering

Practical Fundamentals of Chemical Engineering

Instrumentation, Automation \& Process Control

Practical Analytical Instrumentation in On-Line Applications
Practical Alarm Systems Management for Engineers and Technicians
Troubleshooting Programmable Logic Controller's for Automation and Process Control
Practical Batch Management \& Control (Including S88) for Industry
Practical Boiler Control and Instrumentation for Engineers and Technicians
Practical Programming for Industrial Control - using (IEC 1131-3 and OPC)
Practical Troubleshooting of Data Acquisition \& SCADA Systems for Engineers and Technicians
Practical Industrial Flow Measurement for Engineers and Technicians
Practical Hazops, Trips and Alarms
Practical Hazardous Areas for Engineers and Technicians
A Practical Mini MBA in Instrumentation and Automation
Practical Instrumentation for Automation and Process Control
Practical Intrinsic Safety for Engineers and Technicians
Practical Tuning of Industrial Control Loops
Practical Motion Control for Engineers and Technicians
Practical Fundamentals of OPC (OLE for Process Control)
Practical Process Control for Engineers and Technicians
Practical Process Control \& Tuning of Industrial Control Loops
Practical SCADA \& Telemetry Systems for Industry
Practical Shutdown \& Turnaround Management for Engineers and Managers

Practical Safety Instrumentation \& Emergency Shutdown Systems for Process Industries using IEC 61511 and IEC 61508
Practical Fundamentals of E-Manufacturing, Manufacturing Execution Systems (MES) and Supply Chain Management
Practical Industrial Programming using 61131-3 for Programmable Logic Controllers (PLCs)
Control Valve Sizing, Selection and Maintenance
Best Practice in Process, Electrical and Instrumentation Drawings \& Documentation Practical Distributed Control Systems (DCS)

Mechanical Engineering

Practical Fundamentals of Heating, Ventilation \& Air-conditioning (HVAC) for Engineers \& Technicians
Practical Boiler Plant Operation and Management for Engineers and Technicians
Practical Cleanroom Technology and Facilities for Engineers and Technicians
Practical Hydraulic Systems: Operation and Troubleshooting
Practical Lubrication Engineering for Engineers and Technicians
Practical Safe Lifting Practice and Maintenance
Practical Centrifugal Pumps - Optimizing Performance
Practical Machinery and Automation Safety for Industry
Practical Machinery Vibration Analysis and Predictive Maintenance
Practical Pneumatics: Operation and Troubleshooting for Engineers and Technicians
Practical Pumps and Compressors: Control, Operation, Maintenance and Troubleshooting

Project \& Financial Management

Practical Financial Fundamentals and Project Investment Decision Making
How to Manage Consultants
Marketing for Engineers and Technical Personnel
Practical Project Management for Engineers and Technicians
Practical Specification and Technical Writing for Technical Professionals

PAST PARTICIPANTS SAY:

"Excellent instructor with plenty of practical knowledge." lan Kemp, ANSTO
"Excellent depth of subject knowledge displayed." Hugh Donohue, AMEC
"Saved hours of trial and error."
Mario Messwa, DAPS
"I've gained more useful info from this seminar than any I've previously attended."
Jim Hannen, Wheeling-Misshen Inc.
"This is the 2nd IDC Technologies class I have taken - both have been excellent!"
John Harms, Avista Corporation
"A most enjoyable and informative course. Thank you."
Pat \vee Hammond, Johnson Matthey PLC
"Written material was about the best I've seen for this type of course. The instructor was able to set an excellent pace and was very responsive to the class."
John Myhill, Automated Control Systems
"Excellent, I have taken a TCP/IP Class before and didn't understand it. After this course, I feel more confident with my newfound knowledge."
John Armbrust, Phelps Dodge
"This was one of the best courses I have ever been on. The instructor was excellent and kept me fully interested from start to finish. Really glad I attended."
Chris Mercer, Air Products
"Very competent and great presenter."
David Wolfe, Acromag
"Well presented, excellent material" Stephen Baron, Air Products
"Excellent presentation! Well done." Brett Muhlhauser, Connell Wagner
"Well compiled technical material." Robert Higgenbotham, Yallourn Energy
"Well presented and the instructor obviously has the practical knowledge to back things up." Mike Mazurak, ANSTO
"Great refresher on current practice. Also helped to bring me up to date on new technology."
E. Burnie, Sellotape
"I like the practicality of the workshop."
Karl Armfield, Joy Mining

TECHNICAL WORKSHOPS

ECHNOLOGY TRAINING THAT WORKS

We deliver engineering and technology training that will maximize your business goals. In today's competitive environment, you require training that will help you and your organization to achieve its goals and produce a large return on investment. With our "Training that Works bjective you and your organization will:

- Get job-related skills that you need to achieve your business goals

Improve the operation and design of your equipment and plant
Improve your troubleshooting abilities
Sharpen your competitive edge
Boost morale and retain valuable staff

- Save time and money

EXPERT INSTRUCTORS

We search the world for good quality instructors who have three key attributes:

1. Expert knowledge and experience - of the course topic
2. Superb training abilities - to ensure the know-how is transferred effectively and quickly to you a practical hands-on way
3. Listening skills - they listen carefully to the needs of the participants and want to ensure that you benefit from the experience Each and every instructor is evaluated by the delegates and we assess the presentation after each class to ensure that the instructor stays on track in presenting outstanding courses.

HANDS-ON APPROACH TO TRAINING

All IDC Technologies workshops include practical, hands-on sessions where the delegates are given the opportunity to apply in practice the theory they have learnt.

A fully illustrated workshop manual with hundreds of pages of tables, charts, figures and handy hints, plus considerable reference material is provided FREE of charge to each delegate.

accreditation and continuing education

DC workshops satisfy criteria for Continuing Professional Development for most engineering professional associations throughout the world (incl. The Institution of Electrical Engineers and nstitution of Measurement and Control in the UK, Institution of Engineers in Australia, Institution of Engineers New Zealand)

CERTIFICATE OF ATTENDANCE

Each delegate receives a Certificate of Attendance documenting their experience.

00% MONEY BACK GUARANTEE

IDC Technologies' engineers have put considerable time and experience into ensuring that you gain maximum value from each workshop. If by lunch time of the first day you decide that the workshop is not appropriate for your requirements, please let us know so that we can arrange a 100% refund of your fee.

ON-SITE TRAINING

On-site training is a cost-effective method of training for companies with several employees to train in a particular area. Organizations can save valuable training dollars by holding courses onsite, where costs are significantly less. Other benefits are IDC's ability to focus on particular systems and equipment so that attendees obtain the greatest benefit from the training. All on-site workshops are tailored to meet with our client's training requirements and courses can be presented at beginners, intermediate or advanced levels based on the knowledge and experience of the delegates in attendance. Specific areas of interest to the client can also be covered in more detail.

CUSTOMIZED TRAINING

In addition to standard on-site training, IDC Technologies specializes in developing customized courses to meet our client's training needs. IDC has the engineering and training expertise and resources to work closely with clients in preparing and presenting specialized courses. You may select components of current IDC workshops to be combined with additional topics or we can design a course entirely to your specifications. The benefits to companies in adopting this option are reflected in the increased efficiency of their operations and equipment.

ON-SITE \& CUSTOMIZED TRAINING

For more information or a FREE proposal please contact our Client Services Manager:
Kevin Baker: business@idc-online.com

SAVE OVER 50\%

SPECIALIST CONSULTING

IDC Technologies has been providing high quality specialist advice and consulting for more than ten years to organizations around the world. The technological world today presents tremendous challenges to engineers, scientists and technicians in keeping up to date and taking advantage of the latest developments in the key technology areas. We pride our selves on being the premier provider of practical and cost-effective engineering solutions.

PROFESSIONALLY STAFFED

IDC Technologies consists of an enthusiastic and experienced team that is committed to providing the highest quality in consulting services. The company has thirty-five professional engineers; quality focused support staff, as well as a vast resource base of specialists in their relevant fields.

IDC's independence and impartiality guarantee that clients receive unbiased advice and recommendations, focused on providing the best technical and economical solutions to the client's specific and individual requirements.

COMPANIES WHO HAVE BENEFITED FROM IDC

TECHNOLOGIES' TRAINING:

AUSTRALIA \qquad

 O DEFENCE P DEPT OF TRANSPORT AND WORKS • DSTO - DUKE ENERGY INTERNATIONAL. EMERSON PROCESS
 HD CONSULTING ENGINEERS. GIPPSLAND WATER•GLADSTONE TAFE COLLEGE. GORDON BROTHERS INDUSTRIES LTD
GOSFORD CITY COUNCIL•GREAT SOUTHERN ENERGY• HAMERSLEY RRO -HEWLETT PACKARD•HOLDEN•HOLDENLTD.

 UNIT. RAAF BASE WILLAMTOWN. RAYTHEON. RGC MINERAL SANDS. RLM SYSTEMS. ROBE RIVER IRON ASSOCIATES. OYAL DARWIN HOSPTIAL - SANTOS LTD -SCHNEIDER ELECTRIC. SHELL-CYYDE REFINERY• SNOWY MOUNTAIN HYDRO

bOTSWANA
ANADA
 NBRIDGE PIPELINES•ENMAX•FORD ELECTRONICS MANUFACTURING PLANT•GE ENERGY SERVICES•GENERAL MOTORS SUILLEVIN AUTOMATION • HUSKY OIL• IMC LTD. IMPERIAL OLL • INCO LTD -KALPEN VACHHARAJANI - KEYANO COLLEGE
 TTAWA HYDRO• PETRO CANADA. POWER MEASUREMENT LTD. SASKATCHEWAN POWER •SPARTAN CONTROLS. STONE
ONSOLIDATED. STORA. SUNCOR ENERGY © SYNCRUDE TELUS. TRANS CANADA PIPELINES. TROJAN TECHNOLOGIES MASOLDATED. STORA•SUNCOR ENERGY•SYNCRUDE. TI

FRANCE
SCHLUMBERGE
NDIA
reland
SAYER DIAGNOSTICS. ESB DISTRIBUTION•INTEL•IRISH CEMENT•JANNSEN PHARMACEUTICALS LTD•MICROSOL LIMITED•
PFIZR •PILZ IRELAND PROSCON ENGINEERING
KOREA
US DEPT OF THE ARMY
MALAWI

ALAYSIA

NAmibia

 - NATURAL GAS NZ • NZ MILK PRODUCTS • NZ WATER AND WASTE ASSOC - NORSKE SKOG. NZ ALUMINUM SMELTERS NZ REFINING CO. PAN PAC FOREST PROCUCTS
ZEALAND NAVY• THE UNIVERITY OF AUCKLAND.

SAUDI ARABIA SAUDI ELECTRIC COMPANY

ACTIVEMEDIA INNOVATION PTE LTD • FLOTECH CONTROLS • LAND TRANSPORT AUTHORITY • NGEE ANN POLYTECHNIC south africa
信

SWAZILAND
SIMUNYE SUGAR
TANZANIA
UNITED ARAB EMIRATES
NITED KINGDOM
位

 OKI EUROPE LTD. ORGANON LABORATORIES LTD. PHARMA SITE ENGINEERING• PHILLIPS PETROLEUM• POWERGEN
QINETIQ•RAILTRACK SSSTEMS•RIG TECH•ROBERTS \& PARTNERS•ROLLS ROYCE•ROVER GROUP•RUGBY CEMENT

 VICTREX PLC •VSEC•WATER SERVICE • YARROW SHIPBUILDERS - YORKSHIRE ELECTRIC • YORKSHIRE ELECTRIC

USA
ACW INCORPORATED. AERO SYSTEMS - NASA• AK STEEL CORPORATION - ALCATEL. ALLEN BRADLEY• AMERICAN
ELECTRIC POWERIRADISSON AIRPORT HOTEL. AMGEN INCORPORATED. ANDERSEN CORPORATION AMAROW
 MAINE POWER COMPANY - CHEVRON - CITY OF DETROIT - DAISHOWA PAPER MILL - DEGUSSA CORPORATION - DEPT O
EERGY - DEQUENSE LIGTT DETROT WWTER EEXXON MOBI CHEMICAL COMPANY. FMC CRPORTION - GENERA

 ENGINEERING - VALTEK - WASHINGTON WATER POWER •WISCONSIN POWER - ZENECA
IMBABWE

COMPANY MISSION

"To provide our clients with measurable and significant productivity gains through excellence in cutting edge, practical engineering and technology training"

